
ATTACHMENT L-4: DREDGING PLANS - ALL AREAS

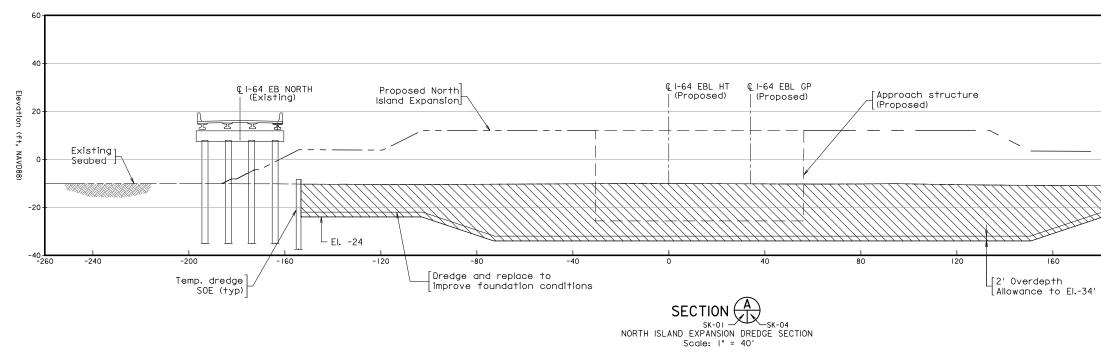
NOTES:

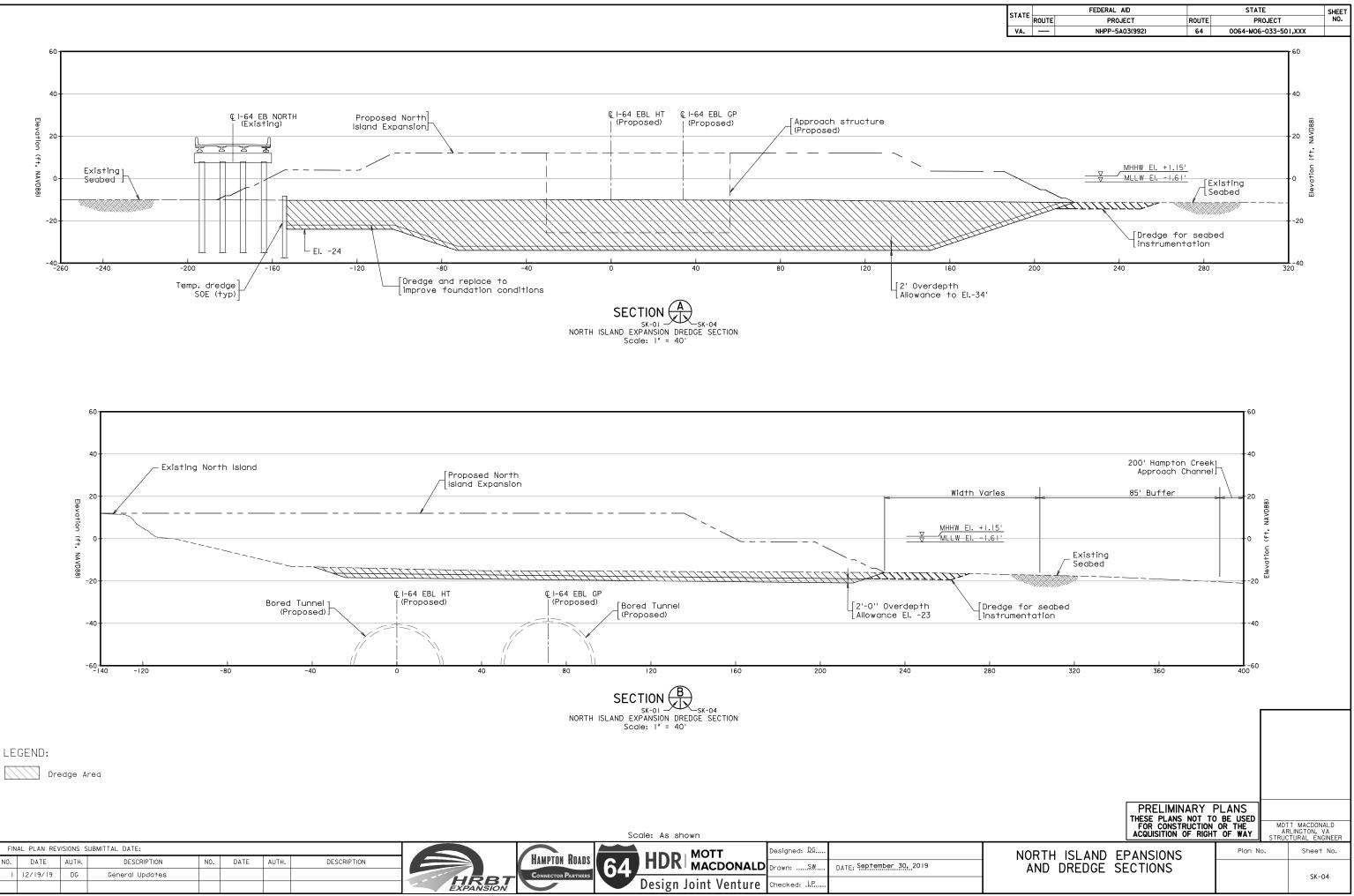
 North and South Island Expansion dredge areas 5, 6, 7, 8, and 9 will be dredged and replaced with clean fill to improve foundation conditions for island expansion.
 For dredge area coordinates and volumes tables see sheet SK-08.
 For dredging cross sections see sheets SK-03, SK-04, SK-05, SK-06, SK-07, AND SK-08. LEGENDS:

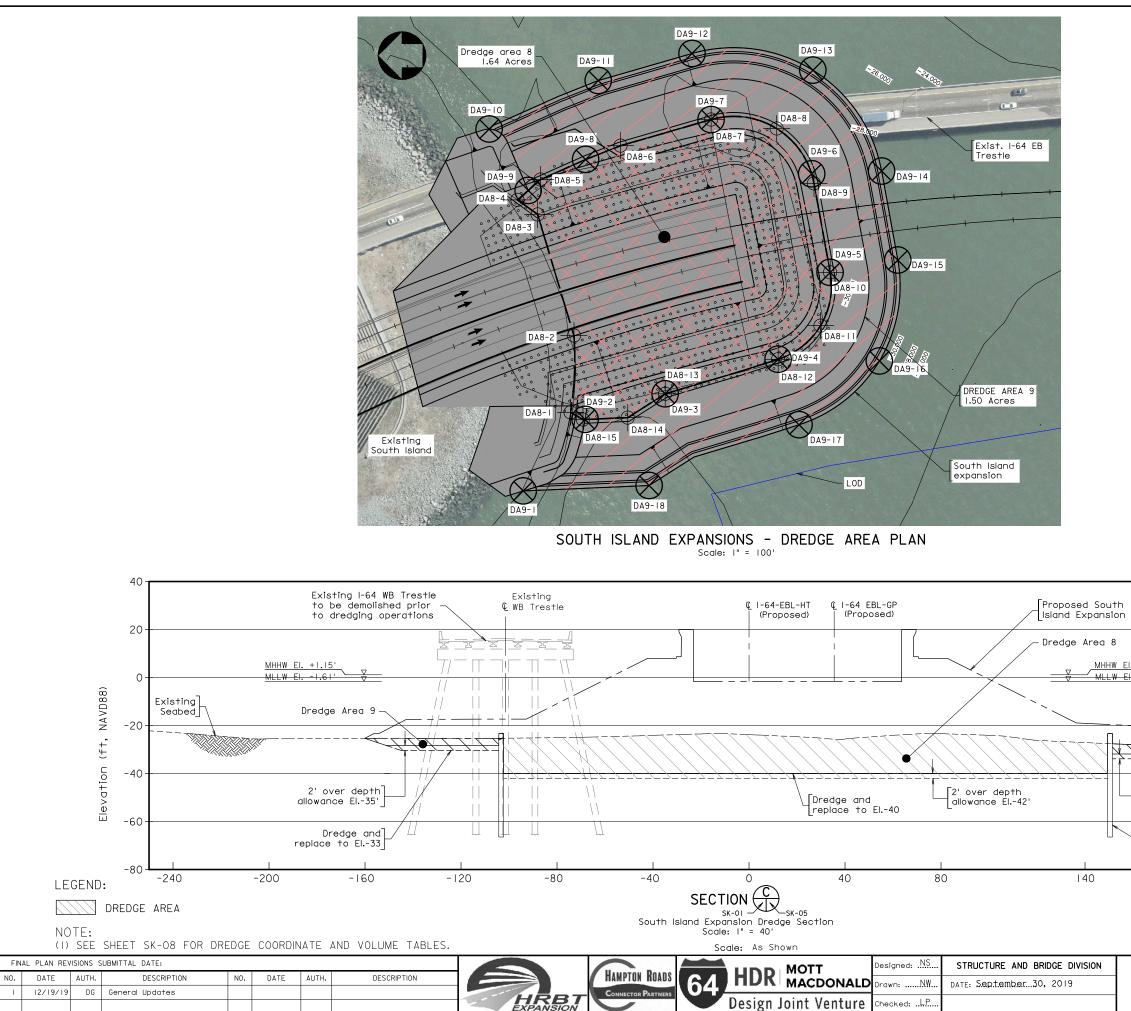
DREDGE AREA 9

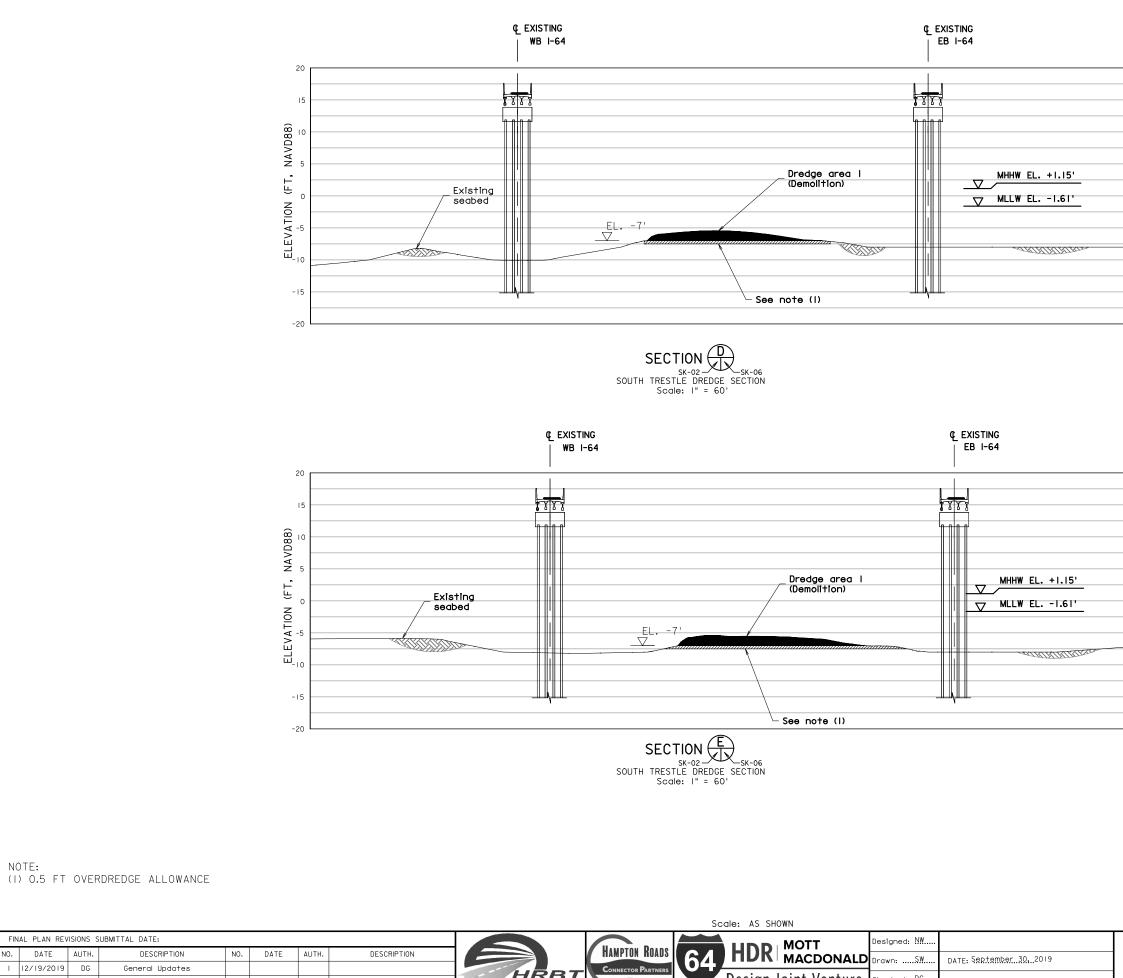
DREDGE AREA 5 DREDGE AREA 7 DREDGE AREA 6 DREDGE AREA 8

NORTH AND SOUTH ISLAND EXPANSIONS - DREDGE PLAN Scale: |" = 400'


			FEDERAL AID		STATE	SHEET
	STATE	ROUTE	PROJECT	ROUTE	PROJECT	NO.
	VA.		NHPP-5A03(992)	64	0064-M06-033-50	I,XXX
		– LOD				
	/					
/	/		Existing Sout		-16	
1		Series in	Nº 4			
	-				7	28
	1		6-7-			
100	175	ELA.		2119	C ar	
-	0		Dredge Area 8 1.64 Acres	-8-104-01.	A	
=	F T O	, TET	TITA A	THE ADART	· _ SK-05	02
-	tt.	I I P		Rep -	DAB-OH	SK-02
-	-2 .	2 -4		01	DAD-08	
37			-2		09	SEE
			-16 South Island	DA8-13 DA8-	12 DAB AT VOX	S
-			Expansion ?		Y	× F F
			-14 SK-01	A	KA	MATCHLINE
			8. 8. 8. 8. N.	-18		Ъ
			Dredge 1.5	Statement of the local division of the local		AT
			1.5	ACTES	-14	Σ
					100	
1						132
			PRELI	MINARY F Ans not to istruction on of right	PLANS BE USED	
			FOR CON	ISTRUCTION	OR THE MOT OF WAY STRUC	TT MACDONALD RLINGTON, VA CTURAL ENGINEER
10	RTH	ISL AI			Plan No.	Sheet No.
	EX	PANS	ND AND SOUTH ION DREDGE PLA	N		SK-01
						SK-01

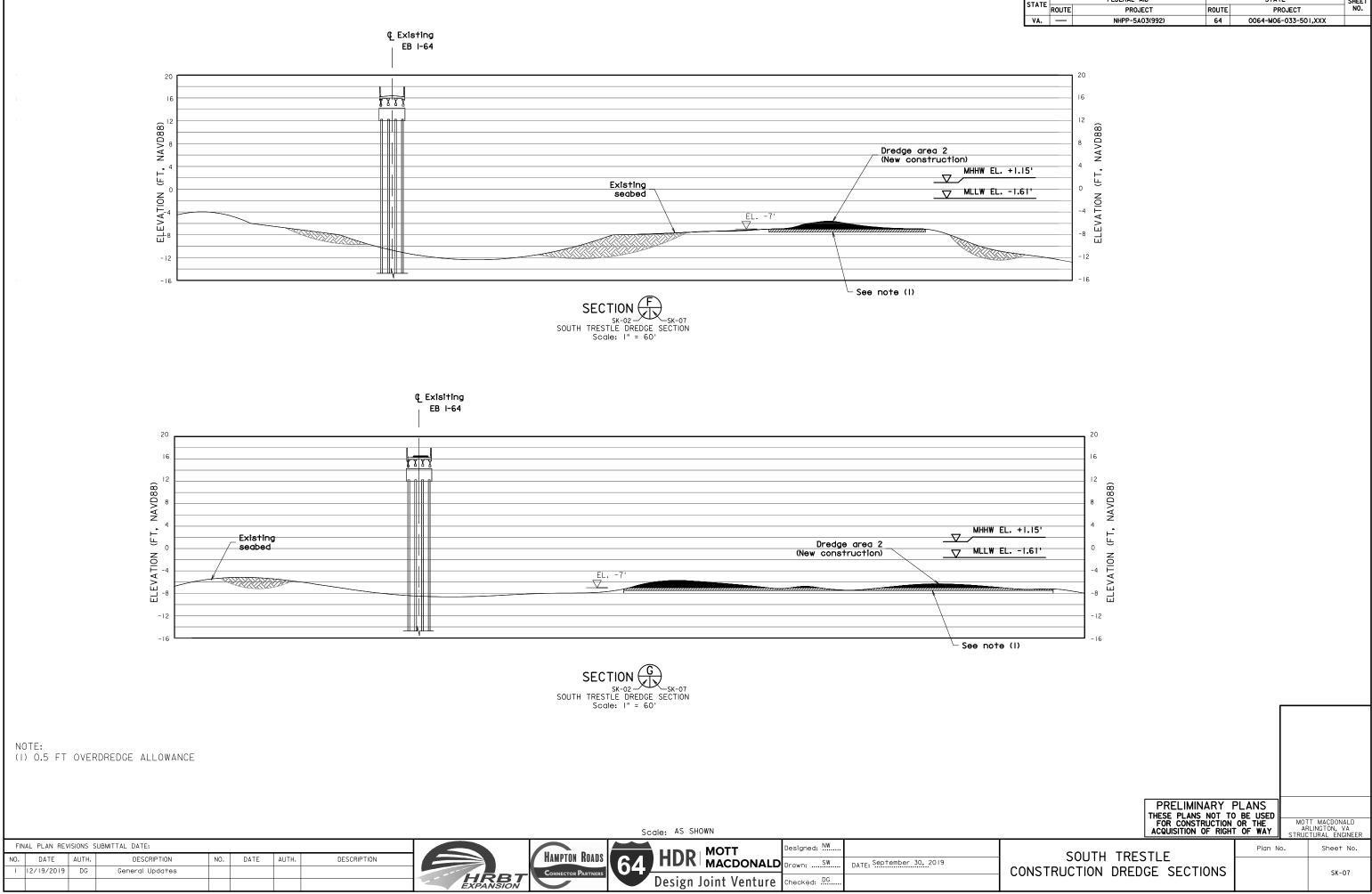

		DREDGE AREA						Scale: As Shown	
- H-	FINAL PLAN RE NO. DATE I I2/19/19	AUTH. DG REV Dr	DESCRIPTION	N0.	DATE	AUTH.	DESCRIPTION	HANPTON ROADS CONNECTOR PARTNERS CONNECTOR PARTNERS	. <u>September. 30.</u> 2019


STATE		FEDERAL AID		SHEET	
STATE	ROUTE	PROJECT	ROUTE	PROJECT	NO.
VA.		NHPP-5A03(992)	64	0064-M06-033-501,XXX	

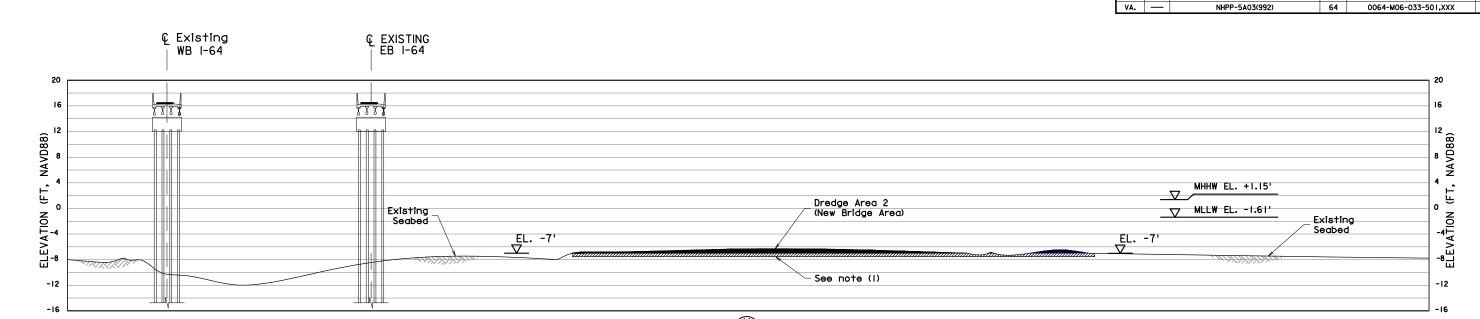


N0.

			FEDERAL AID	1	STATE	0.1557
	STATE	ROUTE	PROJECT	ROUTE	PROJECT	SHEET NO.
	VA.		NHPP-5A03(992)	64	0064-M06-033-50	I,XXX
	-	·		·		
				40		
				T ⁴⁰		
ı						
				20		
EI .	1 151					
	<u> . 5'</u> .6 '			0		
					ŝ	
			Existing		386	
	_	- Dred	ge Area 9 / Seabed		∆ ∨ [
				-20	Ž	
<u> </u>	\leftarrow				+	
<u> </u>	<u>+-</u>	<u> </u>		1	(f	
				40	C	
Гэ		- dept	h		Elevation (ft, NAVD88)	
\exists	llowan	ce El	-35' [replace to El33			
L			_			
				-60	ш	
$\overline{\ }$	Tem	p. dre	edge			
	LSOE	(†ур)				
				L ₋₈₀		
		180	220			
			PRELIMINA THESE PLANS	NOT TO	PLANS D BE USED	
			THESE PLANS FOR CONSTR ACQUISITION O	UCTION		T MACDONALD RLINGTON, VA TURAL ENGINEER
			ACQUISITION O	r KIGH		
Ś	50117	TH IS	SLAND AND EXPANSI	ON	Plan No.	Sheet No.
`		ח	SLAND AND EXPANSI REDGE SECTION			
		5				SK-05


											0				
	FINAL	PLAN REV	ISIONS SL	JBMITTAL DATE:									Designed: NW		
	NO.	DATE	AUTH.	DESCRIPTION	N0.	DATE	AUTH.	DESCRIPTION		HAMPTON ROADS	61	HDR MACDONALD	Drawn: SW	DATE: September 30, 2019	-
	1 12	/19/2019	DG	General Updates					HRBT	CONNECTOR PARTNERS	04				- C
l									EXPANSION			Design Joint Venture	Checked: .N.S		

STATE		FEDERAL AID		SHEET	
	ROUTE	PROJECT	ROUTE	PROJECT	NO.
VA.	—	NHPP-5A03(992)	64	0064-M06-033-501,XXX	



	PRELIMINARY F			
	FOR CONSTRUCTION ACQUISITION OF RIGHT	OR THE	AF	T MACDONALD RLINGTON, VA CTURAL ENGINEER
SOUTH TRES		Plan N	o.	Sheet No.
DEMOLITION DREDG				SK-06

	STATE		FEDERAL AID		SHEET	
	STATE	ROUTE	PROJECT	ROUTE	PROJECT	NO.
[VA.	—	NHPP-5A03(992)	64	0064-M06-033-501,XXX	

NOTE: (I) 0.5 FT OVERDREDGE ALLOWANCE

DREDGE ARE	A 1 - South Trest	le Demolition		DREDGE AREA 2 - South Trestle NEW Construction				
Location	Northing	Easting		Location Northing Easting				
DA1-01	3523412.78	12125180.78		DA2-01	3523555.85	12124592.3		
DA1-02	3523089.34	12125357.00		DA2-02	3523378.79	12124899.7		
DA1-03	3522643.64	12125415.08		DA2-03	3523110.62	12124890.4		
DA1-04	3522157.74	12125472.21		DA2-04	3522669.87	12124992.0		
DA1-05	3521766.63	12125497.02		DA2-05	3522199.39	12125063.3		
DA1-06	3521515.65	12125509.34		DA2-06	3521648.86	12125180.4		
DA1-07	3521210.47	12125513.35		DA2-07	3521421.89	12125225.3		
DA1-08	3520796.61	12125484.95		DA2-08	3521086.73	12125193.7		
DA1-09	3520545.69	12125451.46		DA2-09	3520847.10	12125162.5		
DA1-10	3520562.48	12125403.53		DA2-10	3520496.99	12125116.5		
DA1-11	3520703.24	12125389.40		DA2-11	3520140.52	12125267.2		
DA1-12	3520939.97	12125367.68		DA2-12	3519666.84	12125685.7		
DA1-13	3521165.35	12125346.27		DA2-13	3519546.53	12125465.5		
DA1-14	3521469.45	12125324.61		DA2-14	3519614.09	12125270.6		
DA1-15	3521789.52	12125356.58		DA2-15	3519816.24	12125294.4		
DA1-16	3522176.31	12125328.15		DA2-16	3520101.27	12125149.6		
DA1-17	3522462.36	12125285.66		DA2-17	3520313.48	12124988.6		
DA1-18	3522990.43	12125250.97		DA2-18	3520625.06	12125014.7		
Area (sf):	382021.66		•	DA2-19	3521040.53	12125061.4		
Area (acres):	8.77			DA2-20	3521030.19	12124848.4		
		-		DA2-21	3521334.17	12125090.1		
				DA2-22	3521672.85	12125133.6		
				DA2-23	3522240.19	12124962.1		
				DA2-24	3522646.64	12124796.3		
				DA2-25	3522864.15	12124845.2		
				DA2-26	3523099.17	12124783.4		
				DA2-27	3523443.69	12124623.1		

Area (sf):

Area (acres):

439808.23

10.10

estle NEW	DREDGE AREA	5 - North Island	Expansion			
Easting	Location	Northing	Easting			
12124592.36	DA5-01	3532171.02	12118961.38			
12124899.76	DA5-02	3532255.64	12118970.12			
12124890.41	DA5-03	3532310.27	12119031.50			
12124992.06	DA5-04	3532360.94	12119208.81			
12125063.30	DA5-05	3532348.60	12119296.18			
12125180.45	DA5-06	3532116.99	12119364.77			
12125225.38	DA5-07	3532095.72	12119352.20			
12125193.74	DA5-08	3532001.70	12119322.27			
12125162.55	DA5-09	3532246.94	12119234.72			
12125116.51	Area (sf):	56845.28				
12125267.23	Area (acres):	1.30				
12125685.78						
12125465.54						
12125270.64			F			
12125294.47	DREDGE AREA 6 - North Island Expansion					
12125149.67	Location	Northing	Easting			
12124988.67	DA6-01	3532171.02	12118961.38			

Location	Northing	Easting
DA6-01	3532171.02	12118961.38
DA6-02	3532246.94	12119234.72
DA6-03	3532001.70	12119322.27
DA6-04	3531875.51	12119310.49
DA6-05	3531794.20	12119085.66
DA6-06	3531976.40	12119017.61
Area (sf):	109466.61	
Area (acres):	2.51	

SK-02_XIX_SK-08
South Trestle Dredge Section
Scale: " = 30'

DREDGE A	REA 7 - North Isla	nd Expansion
Location	Northing	Easting
DA7-01	3531794.20	12119085.66
DA7-02	3531875.51	2119310.49
DA7-03	3531850.73	12119308.55
DA7-04	3531759.33	2119323.75
DA7-05	3531720.77	12119336.10
DA7-06	3531155.13	12119727.25
DA7-07	3530998.33	12119868.74
DA7-08	3530818.83	12119996.74
DA7-09	3530785.63	12120040.64
DA7-10	3530760.53	12120062.14
DA7-11	3530696.93	12120081.94
DA7-12	3530656.63	12120122.24
DA7-13	3530642.44	12120199.75
DA7-14	3530578.11	12120181.87
DA7-15	3530546.02	12120151.32
DA7-16	3530459.19	12120016.31
DA7-17	3530442.67	12119916.29
DA7-18	3530503.21	12119834.97
DA7-19	3530644.35	12119751.76
DA7-20	3531196.04	12119407.08
DA7-21	3531498.56	12119230.69
DA7-22	3531626.84	12119162.03
Area (sf):	410705.31	
Area (acres):	9.43	

Location	Northing	Easting
DA8-01	3524340.50	12124854.48
DA8-02	3524337.02	12124854.48
DA8-03	3524374.78	12124980.66
DA8-04	3524395.76	12124995.84
DA8-05	3524371.78	12125016.98
DA8-06	3524288.42	12125052.26
DA8-07	3524194.15	12125079.50
DA8-08	3524125.77	12125070.08
DA8-09	3524086.93	12125013.03
DA8-10	3524070.08	12124920.31
DA8-11	3524080.19	12124864.85
DA8-12	3524124.36	12124829.83
DA8-13	3524241.98	12124793.85
DA8-14	3524280.93	12124769.08
DA8-15	3524327.66	12124767.06
Area (sf):	71406.31	
Area (acres):	1.64	

DREDGE AR	EA 9 - South Isla	and Expansion		Nor	th Island - S	shape	Array	
Location	Northing	Easting		ocation	Northi	ng		Easting
DA9-01	12124793.85	3524241.98		SA-01	1211903	1.50	35	32310.27
DA9-02	12124829.83	3524124.36		SA-02	1211897	0.12	35	32255.64
DA9-03	12124920.31	3524070.09		SA-03	1211896	1.38	35	32171.02
DA9-04	12125023.78	3524086.93		SA-04	1211897	9.58	35	31963.98
DA9-05	12125079.50	3524194.15		SA-05	1211908	5.66	35	31794.20
DA9-06	12125037.94	3524324.79		SA-06	1211916	2.03	35	31626.84
DA9-07	12125005.72	3524384.57		SA-07	1211923	0.69	35	31498.56
DA9-08	12125069.57	3524425.29		SA-08	1211940	7.08	35	31196.04
DA9-09	12125120.12	3524311.54		SA-09	1211975	1.76	35	30644.35
DA9-10	12125148.29	3524214.03		SA-10	1211983	4.97	35	30503.21
DA9-11	12125130.94	3524088.05		SA-11	1211991	5.29	35	30442.67
DA9-12	12125025.83	3524016.48		SA-12	1212001	5.31	35	30459.19
DA9-13	12124933.11	3523999.64		SA-13	1211990	1.00	35	30404.30
DA9-14	12124828.02	3524018.79		SA-14	1211980	0.44	35	30483.02
DA9-15	12124761.65	3524102.49		SA-15	1211919	5.63	35	31479.31
DA9-16	12124698.37	3524258.69		SA-16	1211904	8.78	35	31778.69
DA9-17	12124635.08	3524414.89		SA-17	1211891	2.56	35	32198.19
DA9-18	12124571.80	3524571.09		SA-18	1211894	3.68	35	32284.32
Area (sf):	65444.88		. 4	vrea (sf):	90453.	96		
Area (acres):	1.50		Ar	ea (acres):	2.08		1	
						De	- pth	Volume (in situ)
		Location		A	rea			(In situ) Cubic
						NAV	D 88	yards
	-				017.00			yarus

SHIP WR	ECK DEBRIS REMO	OVAL AREA
Location	Northing	Easting
AVR-01	3519373.47	12126058.78
AVR-02	3519069.45	12126096.42
AVR-03	3518941.62	12126188.28
AVR-04	3518887.33	12126144.61
AVR-05	3519031.82	12126039.20
AVR-06	3519459.26	12125957.89
Area (sf):	38879.59	
Area (acres):	0.89	

								Scale: As Shown
F	INAL PLAN	REVISIONS	SUBMITTAL DATE:					
N0.	DATE	AUTH	DESCRIPTION	N0.	DATE	AUTH.	DESCRIPTION	HAMPTON ROADS 61 HDR MACDONALD Drgwn:
1	12/19/1	9 DG	General Updates					
								Design Joint Venture Checked:P

STATE		FEDERAL AID		STATE	SHEET
STATE	ROUTE	PROJECT	ROUTE	PROJECT	NO.
VA.	—	NHPP-5A03(992)	64	0064-M06-033-501,XXX	

	Plan	No.	Sheet No.		
	PRELIMI THESE PLAN FOR CONS ACQUISITION	S NOT TO	OR THE	MO AF	TT MACDONALD RLINGTON, VA CTURAL ENGINEER
Shipwreck Debris Removal	0.89 acres	-7.5 ft	13,000		
	38,880 SF		40.000		
South Trestle (Demolition phase ~2024)	382,021 SF 8.77 acres	-7.5 ft	33,957		
South Trestle (Construction Phase)	439,808 SF 10.10 acres	-7.5 ft	19,550		
South Island Expansion	136,851 SF 3.14 acres	-42 ft	52,900		
North Island Shape Array	90,454 SF 2.08 acres	-23 ft	20,101		
North Island Expansion	577,017 SF 13.25 acres	-34 ft	112,225		
		NAVD 66	yards		

SOUTH TRESTLE DREDGE SECTION AND TABLES

ATTACHMENT L-5: PORT TOBACCO AT WEANACK (SHIRLEY PLANTATION) DISPOSAL REQUIREMENTS

Attachment L-5 Material Criteria for Disposal at Shirley Plantation - Sediment

PARAMETRI matrix Restrict matrix Restrict matrix Restrict Chief m Non-Neuronization Materia relation Sec Common Sec Common Number and Numb					Dredge	Sediment Crit	eria			
Industrik Industrik Readimation of the program Non-strike of the program	PARAMETER	(1997) Residential				background		Upland Fill	(b) Screening	stringent of preceding two
AlemisorsNA110007,700ICNANANANANANAAlemisor14473.111544.00103230Designar12.2001.504.115443.2030103030Designar12.3001.504.117.504.113.201.0030.0100100CalasaNANANA0.306.118.003.00100100100100100CalasaNANANANA0.306.209.00100 </th <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>containing</th>		-								containing
KalmagyAll4144731111141313131Aream300300100120017.60010314300300300300Aream1002200017.600179031430070090410800			110.000	5 500						
Name ReamName TooName TooName TooName TooName TooName TooName TooName 										14
BaimBaimStrong1.5001.5001.5001.5001.5002.4007.007.001.001.001.00CafminNA303097300.0130.01.00<					41	5			33	
CalanaNoN										
CachamChanNA <th< td=""><td>Beryllium</td><td></td><td></td><td></td><td></td><td></td><td>2,000</td><td></td><td></td><td>160</td></th<>	Beryllium						2,000			160
ChemanNANANA0.32.32.303.001.001.011.111.11CorgetNA8.004.703.101.50094.801.5001.80					39	<0.1			4.98	4.98
CònhaN.A.S.3.2.3.I.S.0.I.S.0.S.0.0.N.A.I.S.0.I.S.0.I.S.0.I.S.0.I.S.0.I.S.0.I.S.0.I.S.0.I.S.0.I.S.0.0. <thi.s.0.0.< th=""><th< td=""><td></td><td></td><td></td><td></td><td>0.2</td><td>22</td><td></td><td></td><td></td><td></td></th<></thi.s.0.0.<>					0.2	22				
CorporinovinovindindindindindindIsanNA82,00055.00NANA55.00NANA150.00NA150.00NA150.00NA150.00NA120120IndegesimNA					0.3	23			111	111
ionNAF20005500IonIon15000Ion15000Lad4008004003002.68003001.20128128MagneseNANANANANANANANANANANAMagneseNA					1.500	9			149	149
LadMage M					-,	-				
MangeneNANANAPAP39NANANAIDMexery144120.78170.061001.441.661.66Nacket2501.008242091.00250.048.648.6Nacket100S8039100NNANANANANANANANANA100Schwim100S8039100NA100NA110NA110NA110SchwimNANANANANANANANA100NA110SchwimNANANANANANA100NA110100NA110Schwim130023.002.3002.3002.3001.5004.594.5		400			300	26			128	
Meense Niski14120.78170.06100141.061.06Niski201.1008242091.0025.0048.648.6Paasim63S80391005.006363Silver110NANANANANA1005.0063Silver110NANANANANANA1005.063Silver110S30390.005.003.001.007.005.01.007.00Vandom20NANANA0.055.0111.007.00Zac1.50035.002.502.802.804.017.001.504.507.00ZacNA0.660.150.023.002.002.002.003.002.007.007.00Acckel 121NA0.660.150.62NA1.002.007.007.007.00Acckel 123NA1.00.240.020.02NA1.007.007.007.007.007.00Acckel 124NA1.00.240.020.020.07NA1.007.00<										
Nickaf Nickaf NA					12				1.04	1.07
Plassian Solum Solum Solum Network Solum Network Solum Network Solum Network Solum Network Solum Network Netw										
Schum63580391005,1006.636.636.63Silver100NANANANANANANA110SodumCANANANANANANANA110SodumCASNNANANANANANANANA110SodumSN <td></td> <td></td> <td></td> <td></td> <td>420</td> <td>9</td> <td></td> <td></td> <td>48.0</td> <td>48.0</td>					420	9			48.0	48.0
Since110058003959051005100110NA100Thallmun2NA <td< td=""><td></td><td></td><td></td><td></td><td>100</td><td></td><td></td><td></td><td></td><td>63</td></td<>					100					63
Thailam2NANA00.55.9111Vandum3705703703705200370570570570570Ziac1.50035.0002.3002.300417.5001.500459459PCBS (mg kg?)1.500459459Acoker 1016NA0.520.40.62NAAcoker 1232NA0.6660.150.62NAAcoker 1234NA0.6660.150.74NAAcoker 1234NA1.00.240.74NA </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NA</td> <td></td>									NA	
Vanaim S70 570 5700 5700 5700 5700 470 470 Cise 1.500 5500 6.2500 6.2800 41 7.500 459 459 PCBS (org kg ⁰) NA 5.2 0.4 21 NA 0.60 Avoker 1021 NA 0.66 0.15 0.62 NA 1 Avoker 121 NA 0.66 0.15 0.62 NA 1 Avoker 122 NA 1.0 0.24 0.74 NA 1 Avoker 123 NA 1.0 0.24 0.74 NA 1 Avoker 124 NA 1.0 0.24 0.74 NA 1 Avoker 124 NA 1.0 0.24 0.74 NA 1 Avoker 126 NA 1.0 0.24 0.74 NA 0.49 Total Avoke ⁹ 0.49 1.50 1.50 0.73 0.676 0.676 Total Avoke ⁹	Sodium							NA		
ZineI.50055,0002,3002,800417,800450459PCRS (ng (kg))NANA520.40.6121NANAAccker 121Accker 1212NA0.660.150.62NA0.62NANAAccker 1222NA0.660.150.62NANANAAccker 1232NA1.00.240.74NANANAAccker 1232NA1.00.240.74NANANAAccker 1234NA1.00.240.74NANANAAccker 1234NA1.00.240.74NANANAAccker 1236NA1.00.24NANANANAAccker 1236NA1.00.24NANANANATeal Accker 1236NA1.00.24NANANANAAccker 12360.49NA1.00.24NANANATeal Accker 12360.49NA1.00.24NANANAAccker 12360.49NA1.00.49NANANANATeal Accker 12360.49NA1.00.49NANANANAAccker 12460.49NA1.00.410.6760.6760.676Accker 1246NANANANANANANANANAAccker 1246NA						0.5				
PCBS ong kg ¹) Image					2 000				150	
Anckor 1016 NA 5.2 0.4 1 21 NA Image: constraint of the second		1,500	35,000	2,300	2,800	41	7,500	1,500	459	459
Anckor 1221 NA 0.066 0.15 0.022 NA Image: constraint of the second		NA	5.2	0.4			21	NA		
Ancdor 1232 NA 0.66 0.15 0.62 NA Image: constraint of the second s										
Anckor 1242NA1.00.24NA1.00.24NA1.0Anckor 1241NA1.00.240.74NAAnckor 1254NA1.00.210.74NAAnckor 1254NA1.00.240.74NAAnckor 1254NA1.00.240.74NAChal Anckor010.51.500.750.760.6760.676Pesticides ang kes ³ 0.01.50Gal Anckor39.62.24.4-DDD26.81.6 <td></td>										
Ansder 1254 NA 1.0 0.11 0.74 NA I Arecker 1250 NA 1.0 0.24 0.74 NA I Total Arcclor ⁰ 0 10.5 1.50 25.2 0.49 0.49 0.49 Total Arcclor ⁰ 0 10.5 1.50 NA 0.676 0.676 0.676 0.670 Total Arcclor ⁰ 3 9.6 2.2 7.2 3 0.028 0.028 47-DDD 2 6.8 1.9 7 2 0.0629 0.0629 DDT, Total 2 8.6 1.9 7 2 0.0629 0.0629 Adrim 0.04 0.41 0.031 0.04 0.04 0.04 aphar-Chordne NA NA NA NA NA NA NA NA Chordnac NA NA NA NA NA NA NA NA NA Chordnac NA S8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.74</td> <td></td> <td></td> <td></td>							0.74			
Arcsler 1260NA1.00.240.00.74NAITonl Arcslor ¹ 010.51.5025.20.490.49Tonla PCBs, all cogeners0.49NA0.6760.6760.676Pestides (mg k2)1111114.4 DDD39.62.27.230.0280.0284.4 DDT26.81.65.120.0280.0284.4 DDT28.61.9720.0290.029DT, Total0.040.0440.0310.110.040.040.04alpha-ChordnaeNANANANANA0.010.01alpha-ChordnaeNANANANANANA0.0160.016ChordynfösNANANANANANANANANANADiazinonNA <t< td=""><td></td><td>NA</td><td></td><td>0.24</td><td></td><td></td><td></td><td>NA</td><td></td><td></td></t<>		NA		0.24				NA		
Total Aracko ² 0 10.5 1.50 25.2 0.49 0.49 Total POst, all cogeners 0.49 - - NA 0.676 0.676 0.676 Posticids (mg g ¹) 3 9.6 2.2 - 7.2 3 0.028 0.028 4.4-DDD 2 6.8 1.6 5.1 2 0.013 0.0313 4.4-DDT 2 8.6 1.9 - 0.77 2 0.0629 0.0629 DDT, Total - - - 0.11 0.04 0.04 aphar-Chlordane NA NA NA NA NA NA 0.04 chloraphifon NA NA NA NA NA 0.01 0.04 aphar-Chloradne NA NA NA NA NA NA 0.02 Chloraphifon NA 8.0 1.8 NA NA NA O.04 0.04 Chloraphifon NA										
Total PCBs, all cogeness0.49rrrrrQ4'DDD39.62.27.230.028Q4'DDE26.81.65.120.03130.0313Q4'DDT28.61.9720.0629DDT, Total28.61.9720.0520*Adrin0.040.140.0310.110.040.040.04aphe-ChordneNANANANANANA0.040.04aphe-ChordneNANANANANANANA0.0110.040.013ChordneNA <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-									
Pesticides (mg kg ³) N			10.5	1.50						
44-DDD 3 9.6 2.2 7.2 3 0.028 0.028 44-DDT 2 6.8 1.6 5.1 2 0.0313 0.031 Ad-DDT 2 8.6 1.9 7 2 0.0629 0.0629 DDT, Total 0.04 0.14 0.031 0.011 0.04 0.04 alpha-Chlordane NA NA <t< td=""><td></td><td>0.49</td><td></td><td></td><td></td><td></td><td>NA</td><td>0.676</td><td>0.676</td><td>0.676</td></t<>		0.49					NA	0.676	0.676	0.676
44-DDE 2 6.8 1.6 5.1 2 0.0313 0.0313 44-DDT 2 8.6 1.9 7 2 0.0629 0.0629 DDT, Total 0.04 0.14 0.031 0.11 0.04 0.04 alpha-Chlordane NA NA NA NA NA NA 0.04 0.04 gamma-Chlordane NA NA NA NA NA NA 0.01 0.04 Chlordane NA NA </td <td></td> <td>2</td> <td>0.6</td> <td>2.2</td> <td></td> <td></td> <td>7.0</td> <td>2</td> <td>0.029</td> <td>0.029</td>		2	0.6	2.2			7.0	2	0.029	0.029
A4-DDT 2 8.6 1.9 7 2 0.0629 0.0629 DDT, Total 0.04 0.14 0.031 0.01 0.04 0.14 0.031 0.01 0.04 0.04 alpha-Chlordane 0.01 0.04 0.04 alpha-Chlordane NA NA NA NA NA NA NA NA NA Additionare 0.01 0.04 0.0176 0.016 0.012 0.0618 0.042 0.0618 0.042										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
Aktrin 0.04 0.14 0.031 0.11 0.04 0.04 apha-Chlordane NA								1		
gamma-Chlordane NA NA NA NA NA NA NA NA NA Chlordane Chlordynicos NA 82.0 6.2 0.0176 0.0176 delta-BHC NA NA NA NA NA NA NA NA Chlordynicos NA NA NA NA NA NA Chlordynicos NA N		0.04		0.031			0.11	0.04		0.04
Chlordane NA 8.0 1.8 Image: constraint of the second secon										
Chloropyrifos NA 82.0 6.2 Image: Constraint of the second							NA	NA	0.017-	0.017-1
deta-BHC NA Disk State Stat									0.0176	0.0176
Diazinon NA 58 4 Image: constraint of the symbolic constraint of	15				ł		NΔ	NΔ	<u> </u>	
Dieklrin 0.042 0.14 0.03 0.11 0.042 0.0618 0.042 Endosulfan NA 490 37 3700 NA 0.042 alpha-Endosulfan NA NA NA NA NA NA NA NA beta-Endosulfan NA							MA	114	† – – – – – – – – – – – – – – – – – – –	
alpha-Endosulfan NA	Dieldrin		0.14	0.03				0.042	0.0618	0.042
beta-Endosulfan NA										
Endosulfan sulfate NA									<u> </u>	
Endrin 17 25 1.8 180 17 0.207 0.207 Endrin aldehyde NA Sigarma BHC (Hexachlorocyclhexane)										
Endrin aldehyde NA 0.016 0.019									0.207	0.207
Guthion 250 18 Image: constraint of the state of									0.207	0.207
Endrin ketone NA 0.15 0.15 0.12 0.038 0.15 0.15 0.15 Heptachlor epoxide NA 0.25 0.059 0.19 NA 0.016 0.016 alpha-BHC (Hexachlorocyclhexane) NA NA NA NA NA 0.016 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.013 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td>								1	1	
Heptachlor epoxide NA 0.25 0.059 0.19 NA 0.016 0.016 alpha=BHC (Hexachlorocyclhexane) NA NA NA NA NA Image: Constraint of the second se	Endrin ketone		NA	NA						
alpha-BHC (Hexachlorocyclhexane) NA O.52 0.52 0.00499 0.0053 0.013 0.003 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
beta-BHC (Hexachlorocyclhexane) NA 0.52 0.010000000000000000000000000000000000							0.19	NA	0.016	0.016
gamma-BHC (Lindane, Hexachlorocyclhexane) 0.52 NA NA 0.52 0.52 0.00499 0.00499 Kepone NA 0.23 0.053										
Kepone NA 0.23 0.053 Image: Constraint of the system of the syste					1		0.52	0.52	0.00499	0.00499
Malathion 1300 120 Image: Constraint of the system Image: Constrais of the system					1			0.02		
Mirex NA 0.13 0.03 Image: Constraint of the state of the	Malathion		1300	120						
Parathion NA 490 37							3,100	280		280
Toxaphene 0.1 2.1 0.48 1.6 0.1 0.1							1.6	<u>.</u>		0.1

Attachment L-5 Material Criteria for Disposal at Shirley Plantation - Sediment

					Dredge	Sediment Crit	eria			
	PARAMETER	NJDEP (1997) Residential	-	n 3 Screening EPA, 2014) ⁴	EPA Part 503 Biosolids	USGS soil background metals ⁵	Exclusion Criteria ⁶	Clean Upland Fill Criteria ⁷	VA DEQ 305 (b) Screening Criteria	More stringent of preceding two
		Soil Cleanup Criteria ³	Industrial Soil	Residential Soil	Exceptional Quality	VA background metal levels				columns ⁸
	ractables (mg kg ⁻¹)	2.400	4.500	250				. 100		
Acenaphthene Acenaphthylene		3,400 NA	4,500 NA	350 NA			33,000 NA	3,400 NA	NA NA	3,400
Anthracene		10,000	23,000	1,700			170,000	10,000	0.845	0.845
Benzidine		NA	0.01	0.00052			NA	NA	0.045	0.045
Benzo(a)anthracen	e	0.9	2.9	0.15			2.1	0.9	1.05	0.9
Benzo(b)fluoranthe	ene	0.9	2.9	0.15			2.1	0.9		0.9
Benzo(k)fluoranthe		0.9	29	1.5			21	0.9		0.9
Benzo(ghi)perylene	e	NA	NA	NA			NA	NA	1.45	0.01
Benzo(a)pyrene bis(2-Chloroethoxy	()methane	0.66 NA	0.29 250	0.015 18			0.66 1,800	0.21 NA	1.45	0.21
bis(2-Chloroethyl)		0.66	1.0	0.23		1	0.9	0.66		0.66
	ropropane) (Bis-2-Chloroisopropyl eth	2,300	NA	NA	1	1	2,300	2,300		2,300
bis(2-Ethylhexyl) p		49	160	38			120	49		49
4-Bromophenyl ph		NA	NA	NA			NA	NA		
Butyl benzyl phtha	late	1,100	1,200	280			1,100	910		910
Carbazole		NA	NA	NA			NA	NA		000
4-Chloroaniline	20	230	NA NA	NA			230	230 NA		230
2-Chloronaphthaler 4-Chlorophenyl ph		NA NA	NA NA	NA		{	NA NA	NA NA		
Chrysene		9	290	15			210	9	1.29	1.29
Dibenz(a,h)anthrac	ene	0.66	0.29	0.015			0.66	0.21	NA	0.21
Dibenzofuran		NA	100	7.2			NA	NA		
	e (dibutyl phthalate)	5,700	NA	NA			5,700	5,700		5,700
1,2-Dichlorobenzer		5,100	930 NA	180 NA			10,000	5,100		5,100
1,3-Dichlorobenzer		5,100 570	820	62.0			5,100 570	5,100 13		5,100 13
3,3'-Dichlorobenzie		2	5.1	1.2			3.8	2		2
Diethyl phthalate		10,000	66,000	4,900			490,000	10,000		10,000
Dimethyl phthalate		10,000	NA	NA			10,000	10,000		10,000
Di-n-octyl phthalat	e	1,100	820	62			1,100	1,100		1,100
2,4-Dinitrotoluene		NA 1	7.4	1.7 0.36			1,200	NA		(1
2,6-Dinitrotoluene 1,2-Diphenylhydra	zine	I NA	2.9	0.36			620	61		61
Fluoranthene		2,300	3,000	230			22,000	2,300	2.23	2.23
Fluorene		2,300	3,000	230			22,000	2,300	0.536	0.536
Hexachlorobenzen	e	0.66	1.4	0.33			1.1	0.66		0.66
Hexachlorobutadie		1	30	6.2			22	1		1
Hexachlorocyclope	entadiene	400	490	37			3,700	400		400
Hexachloroethane Indeno(1,2,3-cd)py	//apa	6 0.9	58 2.9	4.3 0.15			120 2.1	6 0.9		6 0.9
Isophorone		1,100	2,400	560			1,800	1,100		1,100
2-Methylnaphthale	ne	NA	300	23			4,100	NA	NA	
Naphthalene		230	17	3.8			230	20	0.561	0.561
2-Nitroaniline		NA	NA	NA			NA	NA		
3-Nitroaniline		NA	82	18			82	NA		
4-Nitroaniline Nitrobenzene		NA 28	120 22	25 5.1			82 280	NA 28		
2-Nitrophenol		NA	NA	NA	1		230	20		
4-Nitrophenol		NA	NA	NA					1	
N-Nitroso-dimethy		NA	0.045	0.0023						
N-Nitroso-di-N-pro		0.66	0.33	0.076			0.66	0.25		0.25
N-Nitrosodiphenyla Phononthrono	amine	140 NA	470 NA	110 NA			350 NA	140 NA	1 17	140
Phenanthrene Pyrene		NA 1,700	2,300	NA 170			NA 17,000	NA 1,700	1.17 1.52	1.17 1.52
1,2,4-Trichloroben	zene	68	2,300	5.8			400	68		68
Acid Extractables										
4-Chloro-3-methyl		10,000	NA	NA			10,000	10,000		10,000
2-Chlorophenol		280	580	39			5,100	280		280
2,4-Dichloropheno		170	250	18			1,800	170		170
2,4-Dimethylphene	bl	1,100	1,600	120			12,000	1,100		1,100
2,4-Dinitrophenol 4,6-Dinitro-2-meth	vlphenol	110 NA	160 NA	12 NA			1,200 NA	110 NA		110
2-Methylphenol	y prioritor	2,800	NA	NA			2,800	2,800		2,800
4-Methylphenol		2,800	NA	NA		İ	2,800	2,800		2,800
Nonylphenol		NA	NA	NA						
Pentachlorophenol		6	4.0	0.99			9	6		6
Phenol		10,000 5,600	25,000 8,200	1,800 620			180,000 62,000	10,000 5,600		10,000 5,600
2,4,5-Trichlorophe	1					1				5.600

Attachment L-5 Material Criteria for Disposal at Shirley Plantation - Sediment

				Dredge	Sediment Crit	eria			
PARAMETER	NJDEP (1997) Residential			EPA Part 503 Biosolids	USGS soil background metals ⁵	Exclusion Criteria ⁶	Clean Upland Fill Criteria ⁷	VA DEQ 305 (b) Screening	More stringent of preceding two
	Soil Cleanup Criteria ³	Industrial Soil	Residential Soil	Exceptional Quality	VA background metal levels		Criteria	Criteria	columns ⁸
Miscellaneous (mg kg ⁻¹)									
Ammonia as NH ₃ -N	NA	NA	NA						
Chloride	NA	NA	NA						
Cyanide, Free									
Cyanide, Total	1,100	20,000	1,600			20,000	1,100		1,100
2,4-Dichlorophenoxy Acetic Acid (2,4-D)	NA	970	69.0						
Fluoride	NA	4,700	310						
Hydrogen sulfide		1,200,000	280,000						
Nitrate (as N)	NA	190,000	13,000						
Nitrite (as N)	NA	12,000	780						
Total PAHs	NA	NA	NA			NA	23		
Total phenols (phenolic compounds)	NA	NA	NA			NA			
Low molecular weight PAHs	NA	NA	NA			NA			
High molecular weight PAHs	NA	NA	NA			NA			
Total PAHS	NA	NA	NA					22.8	22.8
Sulfate	NA	NA	NA						
2-(2,4,5 Trichlorophenoxy) Proprionic acid (Silvex)	NA	660	49			NA	NA		
Dioxin and Furans (ng kg ⁻¹)									
2,3,7,8-TCDD	NA	22	4.9			18	4.3		4
Tributyltin (mg kg ⁻¹)									
Tributyltin Compounds	N	25	1.8						
Petroleum (mg kg ⁻¹)									
Total petroleum hydrocarbons (TPH)									
TPH-DRO									

Attachment L-5 Material Criteria for Disposal at Shirley Plantation - Sediment

					Dredge	Sediment Crit	eria			
	PARAMETER	NJDEP (1997) Residential		on 3 Screening EPA, 2014) ⁴	EPA Part 503 Biosolids	USGS soil background metals ⁵	Exclusion Criteria ⁶	Clean Upland Fill Criteria ⁷	VA DEQ 305 (b) Screening Criteria	More stringent of preceding two
		Residential Soil Cleanup Criteria ³	Industrial Soil	Residential Soil	Exceptional Quality	VA background metal levels		Criteria	Criteria	columns ⁸
А	dditional Analyses ¹⁰	Units and Reporting convention	Method	Exclusion Criteria ⁶	Clean Fill Criteria ⁷					
	nting (ABA) (all samples > 0.25% otential Acidity (PPA) ¹² for samples <	demand per 1000 Tons	EPA 600-2-78-054 or Orndorff et al. (2008)		-5					
Pyritic S	Optional; may be substituted for Total-S for ABA	%	EPA 600-2-78-054	2.00	< 0.25					
Calcium Carbonat	e Equivalence	% CCE	AOAC 955.01	NA	NA					
Soluble Salts		mmhos cm ⁻¹ or dS m ⁻¹	Saturated paste extract	NA	4 for freshwater sediments. NA for saltwater seds.					
Total Organic Car	bon	%		NA	<u><</u> 5%					
		%Sand	<2 mm	NA	NA					
Particle	Size Analysis (<2 mm)	% Silt % Clay	samples	NA NA	NA NA					
Coarse fragments (>2 mm)		in Citty	>2 mm samples	NA	1424					

Attachment L-5 Material Criteria for Disposal at Shirley Plantation - Sediment

		Dredge Sediment Criteria									
PARAMETER	NJDEP (1997)	0	n 3 Screening EPA, 2014) ⁴	EPA Part 503 Biosolids	USGS soil background metals ⁵	Exclusion Criteria ⁶	Clean Upland Fill	VA DEQ 305 (b) Screening	More stringent of preceding two		
	Residential Soil Cleanup Criteria ³	Industrial Soil	Residential Soil	Exceptional Quality	VA background metal levels		Criteria ⁷	Criteria	columns ⁸		

NA= Indicates that criteria are not available.

1. Enter values for each discrete or composite sample into a separate column. Also provide an overall average for all samples in the right-hand data column. For samples <RL, use 50% of RL for data entry column. One-half the RL is assumed for chemicals reported as non-detect or < RL; however, these values will <u>not</u> be used for exclusionary purposes unless other evidence indicates such. Values in *italics* are not "real" values, but an arbitrary entry.

2. Use **bold highlight** for all individual samples entered in working area <u>and</u> average sample values that exceed the "proposed VA upland fill criteria" in far right column. Highlight all values exceeding proposed VA exclusion criteria in **bold highlight** red. Put arbitrary values calculated as 50% the RL in *italics*. Tip: when copying numbers from your lab analytical results spreadsheets to this spreadsheet, samples with a "<" in front of them are typically at the RL and should reported as 50% RL and put in *italics*.

3. New Jersey Department of Environmental Protection, The Management and Regulation of Dredging Activities and Dredged Material in New Jersey's Tidal Waters. 1997. http://www.njstatelib.org/digit/r588/r5881997.html

4. EPA Region 3 SSLs have been merged into a regional document developed with input from Regions III, VI, and IX. Values from May 2014 version. Values listed for: antimony (metallic), arsenic (inorganic), dromium VI (particulates), lead and compounds, manganese and cadmium values are for diet, methyl mercury, nickel refinery dust, vanadium and compounds. Website: http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm

5. Background metal levels specific to the state of Virginia based on Smith, D.B. et al. 2005. Major- and Trace-Element Concentrations in Soils from Two Continental-Scale Transects of the United States and Canada. USGS Open File Report 2005-1253.http://pubs.usgs.gov/of/2005/1253/pdf/OFR1253.pdf

6. The exclusion standards generally represent the higher of EPA RBC Industrial, NJDEP or EPA 503 EQ levels for a given parameter. Values exceeding these limits are questionable for acceptance. Values proposed by Virginia Tech.

7. Clean fill criteria are based primarily on NJDEP residential cleanup criteria and manually adjusted for known issues with agricultural production/bioavailability. Values between the clean fill and exclusion criteria require a variation of the current management strategy. Values proposed by Virginia Tech.

More stringent of VA DEQ and clean fill criteria. These values carried forward to Part I.A of draft 2012 permit.
 Total Aroclor concentrations are reported as sum of seven individual aroclors.

10. Additional analyses for these basic properties are essential for determining the management or acceptance of dredge materia 11.Not needed, give screening levels for DDD, DDE, DDT

12. PPA method is Orndorff Z. W., W. L. Daniels and D. Fanning. 2008. Reclamation of Disturbed Sulfidic Coastal Plain Sediments Using Lime-Stabilized Biosolids Journal of Environmental Quality 37:1447-1455. PPA analysis also available from Univ. of KY Extension Soil Testing Lab.

Note: Minimum sampling is one composite sample per 50,000 yards of material in situ. A minimum of three samples per material is required regardless of volume. Specific information on sampling procedures should go into the brief descriptions box at the top of the spreadsheet.

ATTACHMENT L-6: DISPOSAL SITE INFORMATION AND MATERIAL ACCEPTANCE LETTERS

Dominion Recycling Center, LLC

November 29, 2018

Mr. Igor Zikus Project Manager Hampton Roads Connector Partners 5701 Thurston Avenue, Suite 100 Virginia Beach, Virginia 23455

Re: Materials Management Proposal – Hampton Roads Bridge Tunnel Expansion Project

Dear Mr. Zikus:

Dominion Recycling Center, LLC (DRC) is pleased to provide this Materials Management Proposal associated with the upcoming Hampton Roads Bridge Tunnel (HRBT) Expansion Project. It is our understanding that upwards of 2.8 million cubic yards of excess excavation materials will be generated on the project that will require disposal at an approved facility. These materials may include general excavation spoils, dredge spoils, slurry wall material, jet grout material, and tunnel boring material, some of which may be mixed with or amended with various nonhazardous treatments or conditioners. Our facility is currently equipped to receive and handle this entire volume of material. All materials would be accepted at our facility that is located at 5444 Bainbridge Boulevard in Chesapeake, Virginia. The following is included with our proposal:

1. Permits

There are various operations that are currently performed at our facility, but the primary operations that are applicable to the HRBT expansion project consist of our landfill and borrow pit operations. The landfill is permitted by the Virginia Department of Environmental Quality (VDEQ) as a construction, demolition and debris (CDD) landfill under VDEQ Permit Number 493. Based on the most recent Solid Waste Information and Assessment report that was submitted to VDEQ, the facility has a remaining airspace capacity of 2,300,000 cubic yards. This capacity consists of approximately 300,000 cubic yards of airspace in the existing cell and approximately 2,000,000 cubic yards airspace in the five lined cells that are permitted to be constructed within the existing 45-acre landfill footprint.

The borrow pit operations are permitted by the Virginia Department of Mines, Minerals and Energy (DMME) under Permit Number 06183AA and encompass approximately 26.2 acres of active sand mining and reclamation on the 43-acre parcel. The DMME permit was amended in February 2018 to allow for acceptance of slurry wall spoils, jet grout spoils, and excavated sand from the Chesapeake Bay Bridge Tunnel Parallel Thimble Shoals Tunnel Project as reclamation fill materials in the borrow pit. The permit amendment allowed for these materials to be conditioned with various polymers and bentonite products

Dominion Recycling Center, LLC

on the project prior to being accepted at our facility as reclamation fill materials. We are currently accepting each material type at our facility. Once the project provides us with additional chemical test data on the tunnel boring material, we will submit an additional amendment to the DMME permit to allow us to accept those materials. The additional amendment will allow us to dispose of the tunnel boring materials as reclamation fill in the borrow pit and prevent unnecessary filling of the landfill airspace, however, the tunnel boring materials would be acceptable for disposal in the landfill without requiring any permit amendments should this be required.

2. Acceptance Criteria

The acceptance criteria at our facility is dependent on the location in which the material will be disposed of. In general, all materials that are accepted for disposal at our facility must be characterized as nonhazardous waste materials. The Management and Reuse of Contaminated Media guidance that has been provided by the VDEQ provides the general acceptance criteria for materials that are permitted for use as reclamation fill in the borrow pit. The Beneficial Fill Industrial Screening Levels would be most applicable to our facility. The concentration of Total Petroleum Hydrocarbons (TPH) must be less than 50 mg/kg to be accepted in the borrow pit and less than 500 mg/kg to be accepted in the lined landfill cells (although VDEQ will typically permit the disposal of soils containing up to 3,000 mg/kg of TPH in lined landfill cells upon submittal of a special waste application). The pH of all materials must demonstrate that the material is not a hazardous waste. The moisture content of all materials entering the borrow pit is not regulated, but all materials that are disposed of in the landfill must not contain any free liquid and must pass the paint filter test. We do not currently have any acceptance limits on salinity.

We have reviewed the Preliminary Sediment Study prepared by Cardno dated July 23, 2018 and have determined that all materials that were tested in the study would be acceptable for disposal as reclamation fill in our borrow pit except for material that is located in the vicinity of boring B-001 since it contained TPH at a concentration of 62 mg/kg. That material would need to be disposed of in one of our lined landfill cells. The only constituent that was detected at concentrations above the Beneficial Fill limits was arsenic, but that constituent is known to be a naturally occurring material in the local soils at concentrations similar to those that were reported by Cardno.

Our facility is generally open from Monday through Friday from 7:00 a.m. to 4:00 p.m. and Saturday from 7:00 a.m. to 12:00 p.m., although alternate work hours may be arranged upon prior agreement. It is anticipated that we will be able to accept up to 5,000 cubic yards of material per day although there are no permit restrictions on the daily volume of reclamation fill that can be received.

3. <u>Material Management Plan</u>

Material from the HRBT project would primarily be managed as reclamation fill in the borrow pit under the assumption that all material will be classified as noncontaminated and nonhazardous. Our plan would be to construct a minimum

Dominion Recycling Center, LLC

of five drying cells within the borrow pit to manage materials that contain excess moisture such as the tunnel boring material. Each drying cell would have a capacity of 5,000 to 10,000 cubic yards. Material would be directly dumped into each drying cell until the capacity was reached. Material would be allowed to drain and dry in each drying cell for approximately one to two weeks and would then be removed and stockpiled for final disposition. Material that does not contain excess moisture would be placed directly into stockpiles. We estimate that the borrow pit property contains approximately 30 acres of land that will be available to perform this task. The landfill property will have approximately 10 acres of land that will be available to perform drying and stockpiling if necessary.

Materials from the HRBT project that can be reused or recycled will be set aside on the property for such purposes. Materials that may fall under this item will include concrete, asphalt pavement and clean sand. We also estimate that upwards of 100,000 cubic yards of silt/clay can be used for construction of our final cap system over the landfill once it reaches capacity.

We look forward to working with you on the project. Please do not hesitate to contact me at (757) 284-9975 or <u>bconley@conleyenvironmental.com</u> if you have any questions or comments or require any additional information.

Sincerely,

Bryan Conley Managing Member

Via email to mkremen@Dragados-USA.com

Tuesday, November 6, 2018

Maksim Kremenchugskiy Senior Project Engineer – HRBT Dragados USA, Inc. 5701 Thurston Ave. Suite 100 Virginia Beach, Virginia 23455

Re: Preliminary Estimate, Responses and Scope/Exclusions

Dear Sir,

Below are the requested preliminary estimate, responses and scope/exclusions. Should you have questions, contact me by phone at 804-357-3913 or email at charles@remadeland.com

Very truly,

Charles H. Carter, III

Port Tobacco at Weanack // Weanack Land LLC 804 357-3913 <u>charles@remadeland.com</u> 461 Shirley Plantation, Charles City, VA 23030 <u>www.remadeland.com</u>

HRBT Spoil Disposal for Dragados ON-SITE DISPOSAL ON WEANACK/SHIRLEY

PRELIMINARY ESTIMATE

Item Description	Quantity	Units	Unit Price	Item Total
MOBILIZATION	1.000	LS	\$4,463,135.47	\$4,463,135.47
HYDRAULIC UNLOAD	2,800,000.000	СҮ	\$19.91	\$55,748,000.00
TREAT AT UNLOADING	2,800,000.000	СҮ	\$2.20	\$6,160,000.00
Total ====================================				

HRBT Tunnel Spoils for Dragados ON-SITE DISPOSAL ON WEANACK/SHIRLEY

Scope Clarifications:

For Hydraulic Unloaded material, production is based on unloading at a rate of 2400 CY per 12-hour shift. We have assumed a conversion rate of 1.4 TN/CY, or 3,920,000 tons. We assume a 30% dry weight of total wet weight of material. We will treat the dry weight basis with agricultural lime at a rate of 0.015 of dry weight, requiring 17,640 tons of ag lime during the process of unloading and placement on-site.

Exclusions: Additional lime, additives or binders and treatment Contaminated materials or materials not meeting permit acceptance Offsite disposal

HRBT Spoil Disposal for Dragados OFF-SITE DISPOSAL AT LANDFILL

Item Description	Quantity	Units	Unit Price	Item Total
MOBILIZATION	1.000	LS	\$5,292,623.03	\$5,292,623.03
HYDRAULIC UNLOAD ON SITE DISPOSAL	400,000.000	СҮ	\$34.67	\$13,868,000.00
MECHANICALLY UNLOAD	2,400,000.000	CY	\$79.88	\$191,712,000.00
TREAT AT UNLOADING	2,800,000.000	CY	\$42.00	\$117,600,000.00
Total ====================================				==> \$328,472,623.03

HRBT Tunnel Spoils for Dragados OFF-SITE DISPOSAL AT LANDFILL

Scope Clarifications:

400,000 CY dredge material will be hydraulically unloaded and disposed on site at Weanack/Shirley Plantation

2,400,000 CY dredge material will be mechanically unloaded and transported to a laydown area at Shirley Plantation.

For Mechanical Unloaded material, production is based on unloading at a rate of 2400 CY per 12hour shift. We have assumed a conversion rate of 1.4 TN/CY, or 3,360,000 tons. We will treat the material with cement at a rate of 15% of total wet weight, requiring 504,000 tons of cement. Once the material has been mixed and dried, it will be reloaded into on road trucks for disposal at a landfill.

For Hydraulic Unloaded material, production is based on unloading at a rate of 2400 CY per 12-hour shift. We have assumed a conversion rate of 1.4 TN/CY, or 560,000 tons. We assume a 30% dry weight of total wet weight of material. We will treat the dry weight basis with agricultural lime at a rate of 0.015 of dry weight, requiring 8,400 tons of ag lime during the process of unloading and placement on-site.

Exclusions: Additional lime, additives or binders and treatment Contaminated materials or materials not meeting permit acceptance

Responses to Questions for HRBT Spoil Disposal for Dragados ON-SITE DISPOSAL ON WEANACK/SHIRLEY

Question #1: Confirming today able to receive, handle, and take up to 2.8 MCY. Answer #1: There are no limits on receiving, handling and taking up to 2.8 MCY of acceptable material at 2,500 cy/day for placement here.

Question #2: Permits currently held to allow to take this material

Permits for handling dredged material for on-site disposal: Answer #2:

DEQ VPA 00579 permit for placement of dredged materials

DEQ VWP 11-0942 permit for dock construction, operation, & maintenance (with corollary Corps permit 11-V0942 & VMRC #11-0942 permit for same) DEQ VAR 052417 permit for industrial stormwater management at the dock

Ouestion #3: Limits on material handling by category:

Answer #3:

- TPH No limit on TPH, limits on TPH parameters in VPA 00579 permit
- pH pH & Acid-Base Accounting to meet VPA 00579 permit No limit
- moisture content

No limit for Sodium or Chloride • salinity, and

- volume (weight) per day No limit
- DDE and DDT No limit other than VPA 00579 permit and:

Parameter	SSL
4,4'-DDD	7.2 mg/kg
4,4'-DDE	5.1 mg/kg
4,4'-DDT	7.0 mg/kg
DDT, Total	N/A

Question #4: Advise that you have received dredged material:

Answer #4: Weanack has handled dredged materials for on-site and off-site disposal for over 20 years. Weanack can accept non-hazardous material the landfill can accept to transport to landfill, and, can accept material meeting the VPA 00579 permit for placement on site.

Ouestion #5: Exact language to address from VDOT: "The Offeror demonstrates it has identified and secured commitments from one or more disposal sites to accept the full quantity of excavated tunnel material and this material, inclusive of any added conditioners or treatments, will be eligible for disposal at such location(s)". Answer #5: Dragados can bring up to 2.8 MCY from the HRBT project to the facility meeting Weanack's DEQ VPA 00579 permit acceptance criteria to be received, offloaded, transported to, and placed in, on-site basins, assuming reasonable business terms and conditions.

State "we have at our facility approximately X acres that allows for handling and drying of Question #6: materials before final placement..."

Answer #6: The Weanack facility has more than 10 acres for handling and drying of materials before final placement or disposal. Weanack has additional land, which should it be needed, can be employed in the drying of materials.

Responses to Questions for HRBT Spoil Disposal for Dragados OFF-SITE DISPOSAL AT LANDFILL

Question #1: Confirming today able to receive, handle, and take up to 2.8 MCY. Answer #1: There are no limits on receiving, handling or taking up to 2.8 MCY of acceptable material at 2,500 cy/day for disposal off-site at landfill.

Question #2: Permits currently held to allow to take this material

Answer #2: Permits for handling dredged material for on-site disposal:

DEQ VWP 11-0942 permit for dock construction, operation, & maintenance (with corollary Corps permit 11-V0942 & VMRC #11-0942 permit for same) DEQ VAR 052417 permit for industrial stormwater management at the dock

Question #3: Limits on material handling by category:

Answer #3: Can accept materials meeting landfill acceptance levels for TPH, pH, salinity, moisture content, volume (weight) per day, DDE, and DDT. Regarding moisture content limits of landfill acceptance, addition of binders and drying on site here can bring material in excess of landfill moisture limits to landfill acceptance levels.

Question #4: Advise that you have received dredged material:

Answer #4: Weanack has handled dredged materials for on-site and off-site disposal for over 20 years. Weanack can accept non-hazardous material the landfill can accept to transport to landfill, and, can accept material meeting the VPA 00579 permit for placement on site.

Question #5: Exact language to address from VDOT: "The Offeror demonstrates it has identified and secured commitments from one or more disposal sites to accept the full quantity of excavated tunnel material and this material, inclusive of any added conditioners or treatments, will be eligible for disposal at such location(s)". Answer #5: Dragados can bring up to 2.8 MCY from the HRBT project to the facility meeting landfill acceptance criteria to be received, offloaded, solidified, dried, transported to, and placed in, landfill, assuming reasonable business terms and conditions. Regarding moisture content limits of landfill acceptance, addition of binders and drying on site here can bring material in excess of landfill moisture limits to landfill acceptance levels.

Question #6: State "we have at our facility approximately X acres that allows for handling and drying of materials before final placement..."

Answer #6: The Weanack facility has more than 10 acres for handling and drying of materials before final placement or disposal. Weanack has additional land, which should it be needed, can be employed in the drying of materials.

####

Via email to mkremen@Dragados-USA.com

Tuesday, November 20, 2018

Maksim Kremenchugskiy Senior Project Engineer – HRBT Dragados USA, Inc. 5701 Thurston Ave. Suite 100 Virginia Beach, Virginia 23455

Re: Addendum to Preliminary Estimate, Responses and Scope/Exclusions of Nov 6

Dear Sir,

Below is addendum to the requested preliminary estimate, responses and scope/exclusions. Should you have questions, contact me by phone at 804-357-3913 or email at charles@remadeland.com

Very truly,

410-71M

Charles H. Carter, III

Port Tobacco at Weanack // Weanack Land LLC804 357-3913charles@remadeland.com461 Shirley Plantation, Charles City, VA 23030www.remadeland.com

HRBT Spoil Disposal for Dragados at WEANACK/SHIRLEY

PRELIMINARY ESTIMATE

Item Description	Quantity	Units	Unit Price	Item Total
MOBILIZATION	1.00	LS	\$4,800,000	\$4,800,000
HYDRAULIC UNLOAD & ON-SITE DISPOSAL	600,000	СҮ	\$31.50	\$18,900,000
MECHANICAL UNLOAD & OFF-SITE DISPOSAL	1,000,000	СҮ	\$104.00	\$104,000,000
TREAT AT UNLOADING	1,600,000	CY	\$51.00	\$81,600,000
Total ====================================		=====		==> \$209,300,000

HRBT Tunnel Spoils for Dragados at WEANACK/SHIRLEY

Scope Clarifications:

600,000 CY dredge material will be hydraulically unloaded and disposed on site at Weanack/Shirley Plantation

1,000,000 CY dredge material will be mechanically unloaded and transported to a laydown area at Shirley Plantation for disposal off-site at Subtitle D landfill

For Hydraulic Unloaded material, production is based on unloading at a rate of 2400 CY per 12-hour shift. We have assumed a conversion rate of 1.4 TN/CY, or 840,000 tons. We assume a 30% dry weight of total wet weight of material. We will treat the dry weight basis with agricultural lime at a rate of 0.015 of dry weight, and 25% safety margin requiring 4,725 tons of ag lime during the process of unloading and placement on-site.

For Mechanical Unloaded material, production is based on unloading at a rate of 2400 CY per 12hour shift. We have assumed a conversion rate of 1.4 TN/CY, or 1,400,000 tons. We will treat the material with cement at a rate of 15% of total wet weight, requiring 210,000 tons of cement. Once the material has been mixed and dried, it will be reloaded into on road trucks for disposal at a landfill.

Exclusions: Additional lime, additives or binders and treatment Contaminated materials or materials not meeting permit acceptance

Responses to Questions for HRBT Spoil Disposal for Dragados

Question #1: The quantities have gone down as a result of VDOT updates to our design. Please update your pricing to show 1.6 MCY of material. 600,000 coming from the Portal Excavation. These quantities do not account for bulking.

Answer #1: See answers above

Question #2: <u>Please provide a price for Mechanical unloading and storage at your facility. We are anticipating that this is a possibility.</u>

Answer #2: See answers above

Question #3: <u>Can you please provide an explanation for the large variance in treatment of the</u> <u>material between onsite and offsite disposal?</u>

Answer #3: On-site disposal is for "cleaner" material while off-site disposal is for material requiring Subtitle D (modern sanitary) landfill disposal. The on-site disposal site requires a lower cost of capital, lower operational costs, lower cost binders, lower cost treatment protocols, lower transportation costs, less man power, and less equipment than an off-site disposal site. Off-site disposal is more expensive than on-site disposal of "cleaner" material at every turn, often by significant amounts.

Question #4: <u>Would you entertain us self-performing the unloading at your facility? IF yes please</u> provide a separated price for just disposal at your facility.

Answer #4: The dock facility is currently under exclusive lease for the next 5 years and those costs are incorporated into the *Preliminary Estimate*, *Responses and Scope/Exclusions of Nov 6* and this *Addendum of Nov 20* to it.

###

Heavy Marine Construction, Underwater Construction, Structural Repairs, Inspections and Call Out Services

December 05, 2018

Dragados USA Mr. Max Kremenchugskiy Senior Project Engineer-HRBT 5701 Thurston Rd. Virginia Beach, VA 23455

RE: HRBT Spoils Transporting & Unloading

Mr. Max Kremenchugskiy

This letter is to confirm that Precon Marine, Inc. (PMI) will be working hand-in-hand with Conley Environmental on the HRBT project and will be providing a turn key solution for handling ALL of the Non Hazardous spoils from this project.

PMI owns and operates it's own Tug Boats and Barges and will utilize 265' "Hopper Barges" to carry spoils from the HRBT Project Site to 1401 Precon Drive. PMI operates 1200 feet of bulk headed riverfront property and plan to unload all materials directly on to dump trucks. If those dump trucks cannot go directly to Dominion Recycling PMI will have a 4 acre site set up with containment to receive the spoils for "Drying" prior to reloading on dump trucks.

PMI will be sending pricing over in the near future for those services.

Thank you for this opportunity, should you have any questions please do not hesitate to call or email me at any time.

rely

Matthew Miller President Precon Marine, Inc.

Cc: Pete Gibbs Precon Marine, Inc.