HRCS SEIS

Hampton Roads Crossing Study SEIS

Traffic and Transportation Technical Report

Prepared in Support of the Supplemental Environmental Impact Statement

Traffic and Transportation Technical Report

HRCS SEIS
 Hampton Roads Crossing Study SEIS

VDOT
(2)

Prepared in support of the Supplemental Environmental Impact Statement

VDOT Project \#: 0064-965-081, P101
UPC\#: 106724

April 2017

Table of Contents

1. Introduction .. 1
1.1 Project Description... 1
1.1.1 Purpose and Need .1
1.1.2 Alternatives. .2
1.1.2.1 The No-Build Alternative 2
1.1.2.2 Alternative A 2
1.1.2.3 Alternative B .2
1.1.2.4 Alternative C .4
1.1.2.5 Alternative D 4
1.1.3 Operationally Independent Sections 4
2. Methodology... 5
2.1 Data Collection 5
2.2 Development of Balanced Existing Traffic Volumes 8
2.2.1 Peak Hour Volumes 8
2.2.2 Daily Volumes. 8
2.3 Capacity Analyses .39
2.4 Forecasting Process 39
2.4.1 Hampton Roads Transportation Planning Organization Travel Demand Model 39
2.4.2 Post-Processing 40
2.5 Toll and Managed Lane Forecasts 40
3. Existing Conditions 41
3.1 Limited Access Highways 41
3.2 Connecting State Routes and Locals Roads. 41
3.3 Major Bridges and Tunnels. 42
3.4 Transit Routes and Facilities 42
3.4.1 Metro Area Express (MAX) Routes 42
3.4.2 Local Bus Routes 42
3.5 Port Facilities 43
3.6 Freight Railroad Network45
3.7 Intercity Passenger Rail Service (Amtrak) 45
3.8 Airports 46
3.9 Emergency Evacuation Routes46
3.10 Bicycle and Pedestrian Network 48
3.11 Existing Traffic Volumes 48
3.12 Crash Analysis 48
3.12.1 Eastbound I-64 Crash Analysis.48
3.12.2 Westbound I-64 Crash Analysis 48
3.12.3 Eastbound I-664 Crash Analysis 48
3.12.4 Westbound I-664 Crash Analysis 48
3.12.5 Eastbound I-564 Crash Analysis 49
3.12.6 Westbound I-564 Crash Analysis 49
3.12.7 Eastbound VA 164 Crash Analysis 49
3.12.8 Westbound VA 164 Crash Analysis 49
3.13 Assessment of Vehicle Speeds 58
3.14 Capacity Analysis. 61
4. Alternatives Considered 77
5. Design Year 2040 Forecasts and Analyses77
5.1 Summary 77
5.2 Key Study Area Segment Impacts 99
5.2.1 HRBT 100
5.2.2 I-564. 101
5.2.3 MMMBT 102
5.2.4 I-664 Bowers Hill 103
5.2.5 Distribution of Naval Station Norfolk Trips 104
5.3 2040 No-Build Alternative 104
5.3.1 Operational Analysis 105
5.3.2 Travel Time 105
5.4 2040 Alternative A 105
5.4.1 Operational Analysis106
5.4.2 Travel Time 106
5.5 2040 Alternative B 107
5.5.1 Operational Analysis 107
5.5.2 Travel Time 108
5.6 2040 Alternative C 108
5.6.1 Operational Analysis 109
5.6.2 Travel Time 109
5.7 2040 Alternative D 110
5.7.1 Operational Analysis 110
5.7.2 Travel Time. 111
6. Opening Year 2028 Forecasts and Analyses 112
6.1 Summary 112
7. Implications of Implementing Tolls and/or HOT Lanes 133
7.1 Travel Demand Model Modification 133
7.2 Fixed Tolls Preliminary Results (Scenario 1) 134
7.3 HOT Lane Preliminary Results (Scenario 2) 134
8. Updated Year 2040 Forecasts and Analyses 136
8.1 Summary 136
8.2 Key Study Area Segment Impacts 155
8.2.1 HRBT. 155
8.2.2 I-564 156
8.2.3 MMMB 157
211 I-664 Bowers Hill 158
8.3 Updated 2040 No-Build Alternative 159
8.3.1 Operational Analysis 159
8.3.2 Travel Time. 160
8.4 2040 Preferred Alternative 160
8.4.1 Operational Analysis 161
8.4.2 Travel Time 161
9. References 163

Appendices

A. 2040 No-Build Traffic Volumes and Analyses
B. 2040 Alternative A Traffic Volumes and Analyses
C. 2040 Alternative B Traffic Volumes and Analyses
D. 2040 Alternative C Traffic Volumes and Analyses
E. 2040 Alternative D Traffic Volumes and Analyses
F. 2040 No-Build Traffic Volumes and Analyses
G. 2040 Alternative A Traffic Volumes and Analyses
H. 2040 Alternative B Traffic Volumes and Analyses I. 2040 Alternative C Traffic Volumes and Analyses J. 2040 Alternative D Traffic Volumes and Analyses K. Travel Demand Model Output for Forecast Segments
L. Navy and Port Facility Trip Information
M. Trip Origin Information By Alternative (From HRTPO)
N. 2040 Updated No-Build Traffic Volumes and Analyses
O. 2040 Preferred Alternative Traffic Volumes and Analyses
P. Photo Documentation

List of Tables

Table 1-1: Alternative A Lane Configurations ... 2 Table 1-2: Alternative B Lane Configurations ... 4 Table 1-3: Alternative C Lane Configurations .. 4 Table 1-4: Alternative D Lane Configurations.. 4 Table 2-1: Mainline and Ramp Count Locations ... 5 Table 2-2: Intersection Turning Movement Count Locations
Table 2-3: Study Area Peak Hours7 8
Table 3-1: Limited Access Highways
41
3. Connecting State Routes and Locals Roads 42
Table 3-4: Existing Commercial Port Facilities 44
Table 3-5: Freight Railroad Network .45
Table 3-6: Amtrak Routes 45
Table 3-7: Commercial and General Aviation Airports 46
Table 3-8: Emergency Evacuation Routes
77
Table 5-1: 2040 Daily Traffic Volumes at Key Roadway Segments 78
Table 5-2: 2040 Projected LOS at Key Roadway Segments78
Table 5-3: 2040 Estimated End-to-End Travel Times by Study Area Corridor
Table 5-4: 2040 Intersection Capacity Analyses Results 97
Table 5-5: I-64 HRBT PM Peak Travel Time Comparison 100
Table 5-6: I-564 AM Peak Travel Time Comparison. 101
Table 5-7: I-664 MMMBT PM Peak Travel Time Comparison..103
Table 5-9: Distribution of Naval Station Norfolk Trips 103
.104
Table 5-10: 2040 No-Build LOS at Key Roadway Segments. 105
Table 5-11: 2040 No-Build Estimated End-to-End Travel Time by Study Area Corrido 105
Table 5-12: 2040 Alternative A Projected LOS at Key Roadway Segments 107
Table 5-14: 2040 Alternative B Projected LOS at Key Roadway Segments 108
Table 5-15: 2040 Alternative B Estimated End-to-End Travel Time by Study Area Corridor 108
Table 5-16: 2040 Alternative C Projected LOS at Key Roadway Segments. 109
Table 5-17: 2040 Alternative C Estimated End-to-End Travel Time by Study Area Corridor 110
Table 5-18: 2040 Alternative D Projected LOS at Key Roadway Segments 111
able 5-19: 2040 Alternative D Estimated End-to-End Travel Time by Study Area Corridor 111
Table 6-1: 2028 Daily Traffic Volumes at Key Roadway Segments112
Table 7-1: Alternative A HOT Travel Demand Model Lane Configurations 133
Table 7-2: Alternative B HOT Travel Demand Model Lane Configurations 133
Table 7-3: Alternative C HOT Travel Demand Model Lane Configurations 133
able 7-4: Alternative D HOT Travel Demand Model Lane Configurations 133
Table 7-5: Modeled HOT Toll Rates (in dollars per mile). 134
Table 7-7: Toll Scenario 2 Output 135
Table 8-1: 2040 Daily Traffic Volumes at Key Roadway Segments

Table 8-2: 2040 Projected LOS at Key Roadway Segments
Table 8-3: 2040 Estimated End-to-End Travel Times by Study Area Corridor 137
Table 8-4: 2040 Intersection Capacity Analyses Results 153
Table 8-5: I-64 HRBT PM Peak Travel Time Comparison - between I-664 and I-564155
Table 8-6: I-564 AM Peak Travel Time Comparison - between I-64 and the Proposed NIT/Navy Interchange 156
Table 8-7: I-664 MMMBT PM Peak Travel Time Comparison - between I-64 and College Drive 157
Table 8-9: 2040 No-Build (Updated) LOS at Key Roadway Segments 158
Table 8-10: 2040 No-Build (Updated) Estimated End-to-End Travel Time by Study Area Corridor 160
Table 8-11: 2040 Preferred Alternative Projected LOS at Key Roadway Segments 161
Table 8-12: 2040 Preferred Alternative Estimated End-to-End Travel Time by Study Area Corridor 162
List of Figures
Figure 1-1: HRCS Study Area Corridors. 2
Figure 1-2: Build Alternatives
Figure 1-3: Roadway Alignments 3
Figure 2-1: 2015 Existing Peak Hour Volumes
..... 43
Figure 3-2: Port Facilities and Freight Rail Network. 44
Figure 3-3: Amtrak Routes and Airports.46
Figure 3-4: Emergency Evacuation Routes. .47
50
Figure 3-5: 1-64 Eastbound Crash Summary 50
Figure 3-6: I-64 Westbound Crash Summary 51
Figure 3-8: I-664 Westbound Crash Summary 53
Figure 3-9: I-564 Eastbound Crash Summary 54
Figure 3-10: I-564 Westbound Crash Summary 55
Figure 3-11: VA 164 Eastbound Crash Summary 56
Figure 3-12: VA 164 Westbound Crash Sum 57
Figure 3-13: I-64 Speed Profiles, 2011 and 2015 59
Figure 3-14: I-664 Speed Profiles, 2011 and 2015 60

Figure 3-15: 2015 Existing Capacity Analysis Results | |
| :--- |
| .. |

Figure 5-1: 2040 Projected Daily Traffic Volumes at the HRBT and MMMBT78
79
Figure 5-2: 2040 Peak Hour Mainline Volumes Summary 79
Figure 5-3: 2040 Peak Hour Mainline Capacity Analyses Results 91
Figure 5-5: Forecast Segments 99
Figure 5-6: I-64 HRBT PM Peak Traffic Travel Time Comparison. 100
Figure 5-7: 1-64 HRBT 2034 PM Peak Hour Travel Time for No-Build Conditions. .100
Figure 5-8: 2034 PM Peak Hour Travel Time Savings along I-64 HRBT compared to No-Build Conditions 101
Figure 5-9: I-564 AM Peak Traffic Travel Time Comparison. 101
Figure 5-10: I-564 2034 AM Peak Hour Travel Time for No-Build Conditions 101
Figure 5-11: 2034 AM Peak Hour Travel Time Savings along I-564 compared to No-Build Conditions............................. 102

Figure 5-12: I-664 MMMBT PM Peak Traffic Travel Time Comparison \qquad .. 102
Figure 5-13: I-664 MMMBT 2034 PM Peak Hour Travel Time for No-Build Conditions ...
Figure 5-14: 2034 PM Peak Hour Travel Time Savings along I-664 MMMBT compared to No-Build Conditions 103
figure 5-15: I-664 Bowers Hill PM Peak Traffic Travel Time Comparison .103
Figure 5-16: I-664 Bowers Hill 2034 PM Peak Hour Travel Time by Direction (No.Build) \qquad 103
5iger 203 Bowers Hill 2034 PM Peak Hour Travel Time by Direction (No-Build) .. 104 Figure 6-1: 2028 Projected Daily Traffic Volumes at the HRBT and MMMBT .. 112
Figure 6-2: 2028 Peak Hour Mainline Volumes Summary

Figure 6-4: 2028 Peak Hour Mainline Average Travel Speeds 127
Figure 8-1: 2040 Projected Daily Traffic Volumes at the HRBT and MMMBT .. 136
Figure 8-2: 2040 Peak Hour Mainline Volumes Summary ... 138
Figure 8-3: 2040 Peak Hour Mainline Capacity Analyses Results .. 143
figure 8-4: 2040 Peak Hour Mainline Average Travel Speeds.. 148
Figure 8-5: I-64 HRBT PM Peak Traffic Travel Time Comparison (Preferred Alternative) ... 156
Figure 8-6: 1-64 HRBT 2040 PM Peak Hour Travel Time for No-Build Conditions.... 156
igure 8-7: 2040 PM Peak Hour Travel Time Savings along I-64 HRBT Compared to No-Build Conditions 156
figure 8-8.1-564 AM Peak Traffic Travel Time Comparison . . 156
Figure 8-9: I-564 2040 AM Peak Hour Travel Time for No-Build Conditions .. 157
Figure 8-10: I-664 MMMBT PM Peak Traffic Travel Time Comparison ... 157
Figure 8-11: I-664 MMMBT 2040 PM Peak Hour Travel Time for No-Build Conditions .. 158
Figure 8-12: 2040 PM Peak Hour Travel Time Savings along I-664 MMMBT Compared to No-Build Conditions........ 158
Figure 8-13: I-664 Bowers Hill PM Peak Traffic Travel Time Comparison
158 158
Figure 8-14: I-664 Bowers Hill 2040 PM Peak Hour Travel Time for No Build Conditions .. 159
Figure 8-15: 2040 PM Peak Hour Travel Time Savings along I-664 Bowers Hill Compared to No-Build Condition................................. 159

1. INTRODUCTION

1.1 PROJECT DESCRIPTION

The Virginia Department of Transportation (VDOT), in cooperation with the Federal Highway Administration (FHWA) as the lead federal agency, is preparing a Supplemental Environmental Impact Statement (SEIS) for the Hampton Roads Crossing Study (HRCS). The Study is located in the cities of Chesapeake, Hampton, Newport News, Norfolk, Portsmouth, and Suffolk, Virginia. The SEIS re-evaluates the findings of the 2001 HRCS Final Environmental Impact Statement (FEIS) and Record of Decision (ROD). The three alternatives retained for analysis in the 2001 FEIS, as well as input received from the public during initial scoping for the SEIS, were used to establish the Study Area Corridors shown in Figure 1-1. The purpose and need of the SEIS is summarized below.
Pursuant to the National Environmental Policy Act (NEPA) of 1969, as amended, FHWA is preparing an SEIS because of the time that has lapsed since the 2001 FEIS and new information indicating significant environmental impacts not previously considered. The SEIS, prepared in accordance with the implementing regulations of NEPA (23 CFR §771.130), is intended to aid in ensuring sound decision-making moving forward by providing a comparative understanding of the potential effects of the various options.

The purpose of this HRCS Traffic and Transportation Technical Report is to document the data collection, traffic forecasting, and analysis efforts performed to assess potential operational improvements for the Study Area Corridors. Information in this report, described below, will support discussions presented in the SEIS:

- Section 1 provides an overview of the study.
- Section 2 outlines the methods used to assess traffic operations.
- Section $\mathbf{3}$ describes existing conditions including an inventory of multimodal transportation infrastructure, as well as peak hour and daily traffic volumes, crash trends, vehicle speeds, and traffic operations along the Study Area Corridors
- Sections 4 provides an overview of alternatives considered for the study.
- Section 5 outlines potential impacts to traffic operations in the design year (2040) associated with each of the alternatives retained for analysis in the SEIS
- Section 6 outlines potential impacts to traffic operations in the opening year (2028) associated with each of the alternatives retained for analysis in the SEIS
- Section 7 describes the potential toll diversion impacts of tolls and/or HOT lanes implemented in conjunction with each of the alternatives retained for analysis in the SEIS
- Section 8 presents an updated analysis of the potential impacts to traffic operations in the design year (2040) associated with the No Build and Preferred Alternatives, based on the updated HRTPO travel demand model, which was released after the publication of the DSEIS.

1.1.1 Purpose and Need

The purpose of the HRCS SEIS is to relieve congestion at the I-64 Hampton Roads Bridge-Tunnel (HRBT) in a manner that improves accessibility, transit, emergency evacuation, and military and goods movement along the primary transportation corridors in the Hampton Roads region, including the I-64, I-664, I-564, and VA 164 corridors. The HRCS will address the following needs (in the order of presentation in Chapter 1 of the Draft SEIS):

- Accommodate travel demand - capacity is inadequate on the Study Area Corridors, contributing to congestion at the HRBT;
- Improve transit access - the lack of transit access across the Hampton Roads waterway;
- Increase regional accessibility - limited number of water crossings and inadequate highway capacity and severe congestion decrease accessibility;
- Address geometric deficiencies - insufficient vertical and horizontal clearance at the HRBT contribute to congestion;
- Enhance emergency evacuation capability - increase capacity for emergency evacuation, particularly at the HRBT;
- Improve strategic military connectivity - congestion impedes military movement missions; and,
- Increase access to port facilities - inadequate access to interstate highway travel in the Study Area Corridors impacts regional commerce.

1.1.2 Alternatives

Five alternatives, including the No-Build Alternative, are under consideration for the Draft SEIS and are assessed in this Technical Report. The proposed limits of the four Build Alternatives are shown on Figure 1-2. Each Technical Report and Memorandum prepared in support of the Draft SEIS assesses existing conditions and environmental impacts along the Study Area Corridors (Figure 1-1) for each alternative. Each alternative is comprised of various roadway alignments, used to describe the alternatives and proposed improvements, shown on Figure 1-3

1.1.2.1 The No-Build Alternative

This alternative includes continued routine maintenance and repairs of existing transportation infrastructure within the Study Area Corridors, but there would be no major improvements.
1.1.2.2 Alternative A

Alternative A begins at the I-64/I-664 interchange in Hampton and creates a consistent six-lane facility by widening I 64 to the l-564 interchange in Norfolk. A parallel bridge-tunnel would be constructed west of the existing I-64 HRBT. During the public review of the HRBT DEIS, there was a clear lack of public or political support for the level of impacts associated with any of the build alternatives. Specifically, potential impacts to the historic district at Hampton University, Hampton National Cemetery, and the high number of displacements were key issues identified by the public, elected officials, and University and Veterans Affairs officials. Given this public opposition, a Preferred Alternative was not identified and the study did not advance. On August 20, 2015, FHWA rescinded its Notice of Intent to prepare the HRBT DEIS, citing public and agency comments and concerns over the magnitude of potential environmental impacts to a variety of resources, such as impacts to historic resources as well as communities and neighborhoods. Consequently, VDOT and FHWA have committed that improvements proposed in the HRCS SEIS to the I-64 corridor would be largely confined to existing right-of-way. To meet this commitment, Alternative A considers a six-lane facility. Alternative A lane configurations are summarized in Table 1-1.

Table 1-1: Alternative A Lane Configurations

Roadway Alignments	Existing Lanes	Proposed Lanes
I-64 (Hampton)	$4-6$	6
I-64 (HRBT and Norfolk)	4	6

1.1.2.3 Alternative B

Alternative B includes all of the improvements included under Alternative A, and the existing $1-564$ corridor that extends from its intersection with I-64 west towards the Elizabeth River. I-564 would be extended to connect to a new bridge-tunnel across the Elizabeth River (l-564 Connector). A new roadway (VA 164 Connector) would extend south from the I-564 Connector, along the east side of the Craney Island Dredged Material Management Area (CIDMMA), and connect to existing VA 164. VA 164 would be widened from this intersection west to I-664. Alternative B lane configurations are summarized in Table 1-2.

Figure 1-2: Build Alternatives

Figure 1-3: Roadway Alignments

Table 1-2: Alternative B Lane Configurations

Roadway Alignments	Existing Lanes	Proposed Lanes
I-64 (Hampton)	$4-6$	6
I-64 (HRBT and Norfolk)	4	6
I-564	6	6
I-564 Connector	none	4
VA 164 Connector	none	4
VA 164	4	6

Note: The l-564 Intermodal Connector (IC) project is a separate project from HRCS that lies between the l-564 Connector and l-564. It would be constructed regardless of whether the HRCS improvements are made and therefore is included under the No-Build Alternative and is not listed with other proposed improvements.

1.1.2.4 Alternative C

Alternative C includes the same improvements along I-564, the I-564 Connector, and the VA 164 Connector that are considered in Alternative B. This alternative would not propose improvements to I-64 or VA 164 beyond the VA 164 Connector. Alternative C includes dedicated transit facilities in specific locations. DRPT completed a study in November 2015 that recommended high frequency bus rapid transit (BRT) service in a fixed guideway or in a shared high occupancy vehicle (HOV) or high occupancy toll (HOT) lanes (DRPT, 2015). Based on that recommendation, for the purposes of this Draft SEIS, transit assumes Bus Rapid Transit (BRT). In the Final SEIS, transit could be redefined or these lanes may be used as managed lanes. Alternative C converts one existing HOV lane in each direction on I564 in Norfolk to transit only. The I-564 Connector and the I-664 Connector would be constructed with transit only anes. This alternative also includes widening along I-664 beginning at I-664/I-64 in Hampton and continuing south to the I-264 interchange in Chesapeake. One new transit lane is included along I-664 between I-664/I-64 in Hampton and the new interchange with the I-664 Connector. Alternative C lane configurations are summarized in Table 1-3.

Table 1-3: Alternative C Lane Configurations

Roadway Alignments	Existing Lanes	Proposed Lanes
I-664 (from I-64 to the proposed I-664 Connector)	$4-6$	$8+2$ Transit Only
I-664 (from the proposed I-664 Connector to VA 164)	4	8
I-664 (from VA 164 to I-264)	4	6
I-564	6	$4+2$ Transit Only
I-564 Connector	none	$4+2$ Transit Only
VA 164 Connector	none	4
I-664 Connector	none	$4+2$ Transit Only

Note: The l-564 IC project is a separate project from HRCS that lies between the l-564 Connector and l-564. It would be constructed regardless of whether the HRCS improvements are made and therefore is included under the No-Build Alternative and is not listed with other proposed improvements.
1.1.2.5 Alternative D

Alternative D is a combination of the sections that comprise Alternatives B and C. Alternative D lane configurations are summarized in Table 1-4

Table 1-4: Alternative D Lane Configurations

Roadway Alignments	Existing Lanes	Proposed Lanes
I-64 (Hampton)	$4-6$	6
I-64 (HRBT and Norfolk)	4	6
I-664 (from I-64 to VA 164)	$4-6$	8
I-664 (from VA 164 to I-264)	4	6
I-664 Connector	None	4
I-564	6	6
I-564 Connector	none	4
VA 164 Connector	none	4
VA 164	4	6
Note: The l-564 IC project is a separate project from HRCS that lies between the l-564 Connector and l-564. It would be constructed regardless		

Note: The I-564 IC project is a separate project from HRCS that lies between the l-564 Connector and l-564. It would be constructed regardless of whether the HRCS improvements are made and therefore is included under the No-Build Alternative and is not listed with other proposed improvements.
1.1.3 Operationally Independent Sections

Given the magnitude and scope of the alternatives, it is expected that a Preferred Alternative would be constructed in stages or operationally independent sections (OIS). An OIS is a portion of an alternative that could be built and function as a viable transportation facility even if other portions of the alternative are not advanced. The OIS are comprised of various roadway alignments and were developed by identifying sections of roadway improvements that if constructed, could function independently.

For traffic forecasting and analysis purposes, however, each alternative was considered in its entirety. Traffic pattern and volume changes that occur when capacity is added in one location of the network affect volumes elsewhere and it would not be possible to isolate traffic impacts to the OIS alone. The relevant operational impacts will be presented in this technical report for each alternative.

2. METHODOLOGY

The traffic analysis study area extends along the mainline roadway segments, and includes interchange ramps and signalized and unsignalized intersections within the interchanges at ramp termini for all Study Area Corridors. Travel forecasting and analysis efforts undertaken to support the SEIS process include data collection, development of balanced peak hour and daily volume forecasts, and capacity analyses for the peak hour, as described in the following subsections.
The traffic study was initiated in June 2015. The study relied on traffic data collected in the spring and fall of 2015, as well as the 2034 Hampton Roads Long Range Transportation Plan (LRTP) and the 2034 Hampton Roads travel demand model. Both 2034 travel demand model and 2034 LRTP were the latest adopted regional planning tools and documents at the time of the study initiation. Outputs of the 2034 travel demand model were grown to 2040 values as described in Section 2.4. Analyses for the Preferred Alternative will be updated using the adopted 2040 travel demand model if it becomes available in time for use in the Final SEIS.
2.1 DATA COLLECTION

An extensive data collection effort was undertaken in June, September, and October 2015 to establish baseline traffic conditions for the study area. Automatic ramp counts and manual intersection turning movement counts were conducted, and data from VDOT's permanent count stations were reviewed for the Study Area Corridors.

Ramp and mainline vehicle classification counts were conducted for a minimum of 48 consecutive hours on nonholiday Tuesdays, Wednesdays, and Thursdays, during typical school and non-holiday periods. Ramp and mainline counts were performed using tube and video count equipment. All turning movement counts were conducted on a typical, non-holiday Tuesday, Wednesday, or Thursday when schools were in session, from 6:00 AM - 10:00 AM and from 3:00 PM - 7:00 PM. Turning movement counts were performed manually and using video count equipment.
Ramp and mainline vehicle classification counts were conducted around key study area interchanges (I-64 and I-664; $\mathrm{I}-64$ and I-564; I-664 and VA 164; and I-664 and I-264) between June 2 and June 18, 2015. All other counts were conducted between September 22 and October 22, 2015, with the exception of supplemental vehicle classification counts on Hampton Boulevard in Norfolk that were conducted January 20 and January 21, 2016. Table 2-1 provides the locations of the mainline and ramp vehicle classification counts conducted for the study. Table 2-2 provides the locations of the intersection turning movement counts.

Table 2-1: Mainline and Ramp Count Locations

Exit	Mainline/Ramp Movement			
	From		To	
I-64 Interchanges				
264	I-664	WB	1-64	EB
264	I-664	WB	I-64	WB
264	1-64	EB	I-664	EB
264	1-64	WB	I-664	EB
Mainline	I-64	EB	Exit 264	
Mainline	I-64	WB	Exit 264	
265	1-64	EB	LaSalle Ave	SB
265	LaSalle Ave	SB	1-64	EB
265	Armistead Ave		1-64	WB
265	I-64	WB	Armistead Ave/LaSalle Ave	SB

Exit	Mainline/Ramp Movement			
	From		To	
265	LaSalle Ave	NB	1-64	EB
265	I-64	WB	Armistead Ave	NB
265	1-64	EB	Rip Rap Rd	
267	I-64	EB	Settlers Landing Rd	
267	Settlers Landing Rd		1-64	EB
267	Settlers Landing Rd		I-64	WB
267	I-64	WB	Settlers Landing Rd	
268	I-64	EB	Mallory St	
268	Mallory St		1-64	EB
268	Mallory St		1-64	WB
268	1-64	WB	Mallory St	
273	1-64	WB	4th View St	
273	4th View St		I-64	WB
273	1-64	EB	4th View St	
273	4th View St		I-64	EB
274	I-64	WB	Bay Ave	WB
274	Bay Ave	EB	I-64	EB
276	US 460/Granby St		1-64	WB
276	Patrol Rd		1-64	EB
276	1-64	EB	l-564	WB
276	1-64	EB	US 460	SB
276	US 460	NB	I-564	WB
276	I-564	EB	I-64	WB
276	1-64	WB	I-564	WB
276	I-564	EB	I-64	EB
276	I-564	EB	Little Creek Rd	
Mainline	1-64	HOV	Exit 276	
276	1-64	WB	US 460	NB
N/A	Terminal Blvd		US 460	
N/A	l-564	EB	1-64/US 460	WB
N/A	Terminal Blvd		I-564/US 460	EB
Mainline	1-64	WB	Exit 276	
Mainline	1-64	EB	Exit 276	
N/A	Terminal Blvd		I-564	EB
N/A	I-564	WB	Terminal Blvd	
N/A	I-564	WB	Bainbridge Ave	
N/A	Bainbridge Ave		l-564	WB
N/A	I-564	EB	Bainbridge Ave	
N/A	Bainbridge Ave		I-564	EB
I-664 Interchanges				
2	I-664	WB	Powhatan Pkwy	
2	Powhatan Pkwy		I-664	EB
2	Powhatan Pkwy		I-664	WB
2	I-664	EB	Powhatan Pkwy	
3	I-664	WB	Aberdeen Rd	

Exit	Mainline/Ramp Movement			
	From		To	
3	Aberdeen Rd		I-664	EB
3	Aberdeen Rd		I-664	WB
3	I-664	EB	Aberdeen Rd	
4	Roanoke Ave		I-664	EB
4	I-664	WB	Roanoke Ave	
4	I-664	EB	Chestnut Ave	
4	Chestnut Ave		I-664	WB
5	Huntington Ave and 34th St		I-664	EB
5	I-664	EB	Warwick Blvd	NB
5	Jefferson Ave	SB	I-664	EB
5	I-664	WB	35th St	
5	Huntington Ave and 34th St		Jefferson Ave	
5	I-664	WB	Jefferson Ave	
5	Huntington Ave and 34th St		I-664	WB
5	Jefferson Ave	SB	Huntington Ave and Warwick Blvd	
5	I-664	EB	Huntington Ave and Warwick Blvd	
6	23rd St/MLK Jr. Way	EB	I-664	EB
6	26th St/US 60	WB	I-664	EB
6	I-664	WB	25th St	EB
6	26th St/US 60	WB	Huntington Ave and 26th St	WB
6	I-664	EB	Huntington Ave and 26th St	WB
6	I-664	EB	27th St	EB
6	23rd St/MLK Jr. Way	EB	I-664	WB
6	I-664	WB	Huntington Ave and 26th St	WB
6	26th St/US 60	WB	I-664	WB
6	28th St	EB	Jefferson Ave and 27th St	
7	Terminal Ave		I-664	EB
7	I-664	EB	Terminal Ave	
7	I-664	WB	Terminal Ave	
7	Terminal Ave		I-664	WB
8	College Dr	SB	I-664	EB
8	I-664	EB	College Dr	SB
8	College Dr	SB	I-664	WB
8	I-664	WB	College Dr	SB
8	College Dr	NB	I-664	EB
8	I-664	EB	College Dr	NB
8	College Dr	NB	I-664	WB
8	I-664	WB	College Dr	NB
9	I-664	EB	US 17/Bridge Rd	WB
9	VA164	WB	I-664	EB
9	VA164	WB	I-664	WB
9	I-664	WB	VA164	WB
9	US 17/Bridge Rd		VA164	EB
9	I-664	EB	VA164	EB
9	VA164	EB	I-664	WB

Exit	Mainline/Ramp Movement			
	From		To	
9	US 17/Bridge Rd	WB	I-664	EB
9	US 17/Bridge Rd		I-664	EB
9	I-664	WB	VA164	EB
9	I-664	WB	US 17/Bridge Rd	EB
Mainline	College Dr	SB	South of I-664	
Mainline	College Dr	NB	South of I-664	
10	I-664	EB	Pughsville Rd	
10	I-664	EB	Pughsville Rd	WB
10	Pughsville Rd	WB	I-664	EB
10	Pughsville Rd	EB	I-664	EB
Mainline	Pughsville Rd	WB	West of I-664	
Mainline	Pughsville Rd	EB	West of I-664	
10	Pughsville Rd	WB	I-664	WB
10	Pughsville Rd	EB	I-664	WB
10	I-664	WB	Pughsville Rd	EB
10	I-664	WB	Pughsville Rd	
11	I-664	EB	Portsmouth Blvd	WB
11	Portsmouth Blvd	WB	I-664	EB
11	I-664	EB	Portsmouth Blvd	EB
11	Portsmouth Blvd	EB	I-664	EB
11	Portsmouth Blvd	WB	I-664	WB
11	I-664	WB	Portsmouth Blvd	WB
11	Portsmouth Blvd	EB	I-664	WB
11	I-664	WB	Portsmouth Blvd	EB
Mainline	Portsmouth Blvd	WB	East of I-664	
Mainline	Portsmouth Blvd	EB	East of I-664	
12	I-664	EB	Dock Landing Rd	
12	I-664	EB	Dock Landing Rd	WB
12	Dock Landing Rd	WB	I-664	EB
12	Dock Landing Rd		I-664	EB
12	Dock Landing Rd		I-664	WB
12	Dock Landing Rd	EB	I-664	WB
12	I-664	WB	Dock Landing Rd	EB
12	I-664	WB	Dock Landing Rd	
Mainline	Dock Landing Rd	WB	East of I-664	
Mainline	Dock Landing Rd	EB	East of I-664	
13	I-664	EB	US 58/Military Hwy	WB
13	US 58/Military Hwy	WB	I-664	EB
13	I-664	EB	US 58/Military Hwy	EB
13	US 58/Military Hwy	EB	I-664	EB
13	US 58/Military Hwy	WB	I-664	WB
13	US 58/Military Hwy	EB	I-664	WB
13	I-664	WB	US 58/Military Hwy	WB
13	I-664	WB	US 58/Military Hwy	EB
14	I-664	EB	US 460/Military Hwy/Schaefer Ave	

Hampton Roads Crossing Study SEIS

Exit	Mainline/Ramp Movement			
	From		To	
14	I-664	EB	1-64	EB
14	I-664	WB	1-64	EB
14	I-64	WB	I-664	WB
14	I-64	WB	I-664	EB
VA 164 Interchanges				
N/A	VA 164	WB	College Dr	NB
N/A	VA 164	WB	College Dr	
N/A	College Dr		VA 164	EB
N/A	Towne Point Rd		VA 164	WB
N/A	VA 164	EB	Towne Point Rd	
N/A	VA 164	WB	Towne Point Rd	
N/A	Towne Point Rd		VA 164	EB
N/A	Cedar Ln		VA 164	WB
N/A	VA 164	EB	Cedar Ln	
N/A	VA 164	WB	Cedar Ln	SB
N/A	Cedar Ln	SB	VA 164	EB
N/A	Cedar Ln	NB	VA 164	EB
N/A	Virginia International Gateway Blvd		VA 164	WB
N/A	VA 164	EB	Virginia International Gateway Blvd	
N/A	VA 164	WB	Virginia International Gateway Blvd	
N/A	Virginia International Gateway Blvd		VA 164	EB
N/A	Norfolk Rd		VA 164	EB
N/A	VA 164	EB	Norfolk Rd	
N/A	Norfolk Rd		VA 164	WB
N/A	VA 164	WB	Norfolk Rd	
N/A	Lee Ave and Harper Ave		VA 164	EB
N/A	VA 164	WB	Railroad Ave	
N/A	MLK Fwy Tunnel		VA 164	EB
N/A	VA 164	EB	Railroad Ave	
N/A	Railroad Ave		MLK Fwy Tunnel	
N/A	Railroad Ave		VA 164	WB
N/A	MLK Fwy Tunnel		Railroad Ave and VA 164	EB
N/A	VA 164	EB	MLK Fwy Tunnel	
N/A	MLK Fwy Tunnel		VA 164	WB
N/A	VA 164	WB	MLK Fwy Tunnel	
N/A	VA 164	EB	London Blvd	WB
N/A	London Blvd	WB	VA 164	WB
N/A	London Blvd	EB	VA 164	WB
Hampton Blvd				
Mainline	Hampton Blvd	SB	Between Seabee Rd and 900 ${ }^{\text {th }}$ St	
Mainline	Hampton Blvd	NB	Between Seabee Rd and 90 ${ }^{\text {th }}$ St	

Table 2-2: Intersection Turning Movement Count Locations

Exit	Location		
1-64 Interchanges			
265	Armistead Ave	at	I-64 WB On-Ramp
265	Armistead Ave	at	LaSalle Ave
265	I-64 EB Off-Ramp	at	Rip Rap Rd
267	I-64 EB Off-Ramp	at	Settlers Landing Rd/Tyler St
267	Settlers Landing Rd	at	I-64 EB On-Ramp
267	Settlers Landing Rd	at	I-64 WB Ramps
268	I-64 EB Off-Ramp	at	Mallory St
268	Mallory St	at	I-64 WB Ramps
273	4th View St	at	I-64 WB Ramps
273	4th View St	at	I-64 EB Ramps
276	US 460/Granby St	at	1-64 WB On-Ramp
N/A	Bainbridge Ave	at	I-564 Ramps
I-664 Interchanges			
2	Powhatan Pkwy	at	I-664 WB Ramps
2	Powhatan Pkwy	at	I-664 EB Ramps
3	Aberdeen Rd	at	I-664 WB Ramps
3	Aberdeen Rd	at	I-664 EB Ramps
4	Roanoke Ave	at	41st St/l-664 EB On-Ramp
4	I-664 WB Off-Ramp	at	Roanoke Ave
4	Roanoke Ave	at	39th St
4	41st St/--664 EB Off-Ramp	at	Chestnut Ave
4	Chestnut Ave	at	I-664 WB On-Ramp
4	Chestnut Ave	at	39th St
5	Huntington Ave	at	34th St
5	Huntington Ave	at	35th St
5	Jefferson Ave	at	35th St
5	Jefferson Ave	at	36th St
6	Huntington Ave	at	23rd St/MLK Jr. Way
6	Huntington Ave	at	26th St
6	Huntington Ave	at	28th St
6	Jefferson Ave	at	25th St/MLK Jr. Way
6	Jefferson Ave	at	26th St
6	Jefferson Ave	at	27th St
7	Terminal Ave	at	I-664 WB Ramps
13	Jolliff Rd	at	Airline Blvd
13	S Military Hwy	at	W Military Hwy
13	I-664 EB Ramps	at	US 13/US 460 Business
VA 164 Interchanges			
N/A	College Dr	at	VA 164 EB On-Ramp
N/A	College Dr	at	US 17/Bridge Rd
N/A	Towne Point Rd	at	VA 164 WB Ramps
N/A	Towne Point Rd	at	VA 164 EB Ramps
N/A	VA 164 EB Off-Ramp	at	Cedar Ln

Peak hour volumes were manually adjusted for balance between interchanges and intersections by holding the volumes at the major interchanges in the study area (I-64 and I-664; I-64 and I-564; I-664 and VA 164; and I-664 and $1-264)$ constant, then proportionally adding and subtracting ramp volumes between the major interchanges
The balanced 2015 peak hour volumes are provided in Figure 2-1.
2.2.2 Daily Volumes

Development of the daily volumes followed the same approach as the development of peak hour volumes, with the exception that daily volumes were modified to account for seasonal variations. Traffic volumes for the entire year 2014 on the HRBT and MMMBT were reviewed to determine the month-to-month variation, as well as the daily variations within each month. First, the monthly totals were computed for 2014. Then, the percentage variation for each month compared to the annual average volume was computed. The computed percentage was applied to the counts conducted in June 2015 to normalize the data. The computed percentages indicate that counts conducted in October and September did not need to be seasonally adjusted, as counts conducted during those months represent typical annual conditions.

The balanced daily volumes represent average weekday conditions, although higher weekend and seasonal volumes have been observed on the HRBT.

At some locations only peak hour data were collected. To estimate daily volumes from these peak hour data, k factors (ratio of peak period versus daily traffic volume) were computed by dividing AM and PM peak hour volumes by the seasonally adjusted daily volume at nearby locations where both peak and daily data were available. The computed k-factors at these nearby locations were then used at locations where only peak hour counts were conducted to estimate a daily volume. Balancing procedures identical to those followed for the peak hour volumes were used to balance the daily volumes.
Two key reasonableness checks were performed on the final balanced peak hour and daily volumes. First, k-factors were re-computed using the balanced daily and peak hour volumes. These factors were then reviewed to ensure that there were no ramps or intersections where the ratio of peak-to-daily volume is beyond typical values, and that k-factors reflect existing traffic patterns, in particular near military facilities (such as l-564) where highly directional traffic volumes entering and departing the facility tend to coincide with work shifts. Second, the daily volumes were compared to the latest available (2014) traffic data published by VDOT to ensure 2015 volumes are consistent with the established 2014 volumes.

The balanced 2015 weekday daily volumes are provided in Figure 2-2.

Raw traffic counts were reviewed to identify the peak hour at each data collection location (mainline segments, ramps, intersections, and VDOT mainline permanent count stations). In locations where the data were collected over multiple days, peak hour data were averaged for data collected on a Tuesday, Wednesday, or Thursday. After reviewing the peak hours for the individual data collection locations, common peak hours for major sections within the study area were selected. The hourly traffic volumes and heavy vehicle percentages for the common peak hour were then extracted from the raw count data at each location. The identified peak hours are identified in Table 2-3.

Table 2-3: Study Area Peak Hours

Roadway Alignments	AM Peak Hour	PM Peak Hour
1-64	7:15 AM - 8:15 AM	3:30 PM - 4:30 PM
I-564	6:45 AM - 7:45 AM	3:30 PM - 4:30 PM
I-664 (from l-64 to VA 164)	7:00 AM - 8:00 AM	4:00 PM - 5:00 PM
I-664 (from VA 164 to I-264)	7:30 AM - 8:30 AM	4:30 PM - 5:30 PM
VA 164	7:00 AM - 8:00 AM	4:00 PM - 5:00 PM

| $7: 00$ AM - 8:00 AM |
| :--- | :--- |

Exit	Cedar Ln	at	Coast Guard Blvd/VA 164 WB On-Ramp
N/A	Virginia International Gateway Blvd	at	Wild Duck Ln
N/A	Virginia International Gateway Blvd	at	VA 164 WB Ramps
N/A	Virginia International Gateway Blvd	at	VA 164 EB Ramps
N/A	Norfolk Rd	at	VA 164 EB Ramps
N/A	Norfolk Rd	at	VA 164 WB Ramps
N/A	Lee Ave	at	Woodrow St/Harper Ave
N/A	Lee Ave	at	Cleveland St/Railroad Ave
N/A	VA 164 EB Off-Ramp	at	Railroad Ave
N/A	Railroad Ave	VA 164 WB Ramps	
N/A			
Count data were obtained from VDOT permanent count stations for the HRBT and Monitor-Merrimac Memorial			

Count data were obtained from VDOT permanent count stations for the HRBT and Monitor-Merrimac Memorial Bridge-Tunnel (MMMBT) for all of 2011 and 2014, as well as June 2015. The 2014 data were compared with 2011 data to evaluate growth in daily traffic and to assess whether peak spreading has occurred over the past years.

Count data were obtained from other VDOT permanent count stations along the Study Area Corridors for April and August 2014, as well as June 2015. The ramp, mainline, and intersection turning movement counts and data from VDOT's permanent count stations were analyzed to determine heavy vehicle percentages used in the capacity analyses.

NRIX data were used to develop speed profiles of I-64 and I-664 over the course of an average day to help identify recurring areas of congestion and quantify the level of congestion. The 2015 data were compared with 2011 data to valuate whether congestion has increased over the past years.

Finally, crash data from VDOT's GIS database for the Study Area Corridors were obtained to identify crash trends and crash hotspots, and to compare with crash rates on similar facilities within the state
2.2 DEVELOPMENT OF BALANCED EXISTING TRAFFIC VOLUMES

To support the traffic analysis of alternatives for the HRCS SEIS, peak hour and weekday Average Daily Traffic (ADT) volumes were developed for each alternative to provide a comprehensive assessment of operations during both the highest volume peak hour conditions and over the course of a typical weekday.

2.2.1 Peak Hour Volumes

Legend
x,xxx (x,xxx) AM (PM) Peak Hour Volume

	HRCS SEIS Hampton Roads Crossing Study SEIS	
	2015 Existing Peak Hour Volumes I-664 Corridor	
	April 2017	Figure 2-1.10

(

[^0]| | HRCS SEIS
 Hampton Roads Crossing Study SEIS | |
| :---: | :---: | :---: |
| | 2015 Existing Peak Hour Volumes VA 164 Corridor | |
| | April 2017 | Figure 2-1.15 |

[^1]| | HRCS SEIS Hampton Roads Crossing Study SEIS | |
| :---: | :---: | :---: |
| | 2015 Existing Weekday Daily Volumes VA 164 Corridor | |
| | April 2017 | Figure 2-2.15 |

2.3 CAPACITY ANALYSES

Capacity analyses along mainlines of the Study Area Corridors were conducted for weekday AM and PM peak hour conditions under Existing, 2028 No-Build, 2028 Build Alternative, 2040 No-Build, and 2040 Build Alternative scenarios using the latest version of the Highway Capacity Software (HCS 2010 Version 6.70), which was developed based on the methodologies presented in the 2010 Highway Capacity Manual (TRB, 2010). The Freeway Facilities module was used to conduct the mainline capacity analyses.

The I-64, I-564, I-664, VA 164 corridors and proposed new alignments crossing the Elizabeth River were each divided into segments, representing either a mainline basic freeway segment, a weaving segment, or a ramp junction (merge or diverge segment). Segments along each corridor were then evaluated to determine the AM and PM peak hour Level of Service (LOS) based on existing (2015) and future (2040) volumes developed for this study. Capacities for the HRBT and MMMBT were assumed to be 1,600 vehicles per hour per lane, consistent with assumptions for the bridge-tunnels developed by the HRTPO.
Level of Service is a letter-grade description of the quality of traffic flow, ranging from A (best) to F (worst). LOS A represents free-flow conditions where vehicles can travel unimpeded, and where incidents can generally be absorbed. LOS E represents operations near the roadway's capacity, with very unstable flow in which even minor ncidents lead to significant queueing. LOS F represents a breakdown in traffic flow with demand exceeding capacity. However, it should be noted that in an urban environment, such as the one that surrounds the Study Area Corridors, LOS is not considered the best indicator of improvements to the network, as it does not capture measurable improvements made within a given letter grade. FHWA has acknowledged this issue in recent revisions to its guidance, which removes previous LOS requirements for interstate improvements. Therefore, additional measures of effectiveness including estimated travel time, speed, and delay, as well as daily Vehicle Hours Traveled (VHT) and daily Vehicle Miles Traveled (VMT) were developed.
Capacity analyses at intersections within the interchanges were conducted for weekday AM and PM peak hour conditions under Existing, 2028 No-Build, 2028 Build Alternative, 2040 No-Build, and 2040 Build Alternative scenarios using the latest version of Synchro with SimTraffic (Version 9.1), which implements the methodologies presented in the 2010 Highway Capacity Manual. Intersections were evaluated to determine the AM and PM peak hour delay (in seconds) and LOS based on existing (2015) and future (2028 and 2040) volumes developed for this study
2.4 FORECASTING PROCESS
2.4.1 Hampton Roads Transportation Planning Organization Travel Demand Mode

Year 2028 and 2040 travel demand forecasts were developed for both No-Build conditions and all Build Alternatives using the latest adopted regional Travel Demand Forecast Model maintained by the Hampton Roads Transportation Planning Organization (HRTPO). A travel demand forecast model is a set of computer-based mathematical relationships that attempts to capture the interaction of travel activities and choices made by a population in a specific region given a proposed network (e.g., highway, transit, etc.) and demographic or land use inputs (e.g., population, employment, etc.). The main inputs to a travel demand model are

- Demographic and economic changes in the region, specifically the location of employment and housing; and,
- Characteristics of the region's transportation system, including proposed changes in the transportation facilities and operating policies.

Travel demand models have been used in Virginia for the past three decades for all NEPA studies that involve traffic forecasting and air quality evaluation, including the 2001 Third Crossing EIS, 2011 HRBT DEIS, 2012 I-64 Peninsula EIS, and US 460 EIS. Use of travel demand models ensures a consistent analysis approach to all NEPA studies in Virginia.

The current HRTPO model is an advanced four-step forecasting model to support air quality analysis and projec planning in the Hampton Roads region. The HRTPO model generally follows the Virginia Transportation Modelin Policies and Procedures Manual, as documented in the 2013 Hampton Roads Model Methodology Report (HRTPO, 2013) and 2014 Hampton Roads Model Release Notes (HRTPO, 2014). The HRTPO travel demand model was calibrated for the 2009 base year against trip distribution and mode choice data contained in the National Household Transportation Survey. Additional validation tests were performed to ensure that final model output wa within reasonable tolerance of observed ground data and produced reasonable outputs when future-year transportation system assumptions were changed (such as the inclusion of new roadway facilities). The HRTPO model employs a conventional gravity model to estimate trip distribution.

The HRTPO model has a 2009 base year and a 2034 horizon year, which is the latest year for which the HRTPO has adopted regional land use forecasts.
The HRTPO model was provided by VDOT for use in the HRCS project in July 2015. The HRTPO model was considered validated for use in the HRCS and used as the baseline travel demand model. The HRTPO model was used without modifications to any of the components of the four-step model process. Similarly, no changes were made to any land use or socioeconomic inputs or other model constants for either the 2009 base year or the 2034 No-Build and Build scenarios. In accordance with accepted model practice, the same land use data were used as inputs for both No-Build and Build conditions.

However, the HRTPO model included several projects that are not anticipated to be place by 2040. These projects were removed from all future-scenario model runs. One project which is anticipated to be in place by 2040 but was not coded in the HRTPO model was added. Details on these projects are provided below:

- Eliminated the US 460/US 58/US 13 Connector project
- Removed tolls from all existing and proposed river crossings except for the Midtown Tunnel (US 58) and the Downtown Tunnel (I-264); and,
- Added third General Purpose lane to I-64 between I-264 (Bowers Hill interchange) and I-464, and one HOV lane in each direction. The HOV lane ties into the existing HOV system east of I-464, and has the same peak hour occupancy restrictions as the existing system.
In addition, the facility type for the proposed new crossings (VA 164 Connector, I-564 Connector, and I-664 Connector; used in Alternatives B-D) was set to "freeway" for their entire length (some VA 164 Connector segments north of VA 164 were originally coded as "collector" in the 2034 HRTPO model). The new crossings were not included in the No-Build or Alternative A model runs.
The 2034 HRTPO model was used to develop 2034 traffic forecasts which were then extrapolated to Year 2040 forecasts. The growth rates used to extrapolate 2034 daily volumes to 2040 daily volumes were based on the annua linear growth rate that was calculated from the model from 2015 to 2034. These growth rates, which range from 1 to 1.2 percent per year, were applied to all Study Area Corridor roadways, including new links across the Elizabeth River.

Shortly before the publication of the HRCS Draft SEIS, HRTPO adopted its 2040 Long Range Transportation Plan (LRTP). The timing of this action did not allow the 2040 model to be incorporated into the analysis to support the

Draft SEIS. The 2040 LRTP model, however, will be used to analyze the Preferred Alternative in the Final SEIS, should one be identified.
Interim year 2028 travel demand forecasts were also developed using the HRTPO model, using the planned 2028 transportation network. In consultation with HRTPO, the 2028 land use data were interpolated between the adopted 2009 and 2034 models. The 2028 network excluded the anticipated widening of the I-64 south side between the Bowers Hill Interchange and I-464, including widening of the High Rise Bridge.

2.4.2 Post-Processing

Post-processing refers to analyses performed after execution of the travel demand forecast model run. Postprocessing activities are applied to the travel demand forecast model results to compensate for the limitations of the model. The model used for the study produced raw daily link volumes. In order to develop daily and hourly volumes for the peak travel periods, the link-level model outputs were refined for the segments of interest along the Study Area Corridors and the arterial approaches. The freeway system included all mainline links, collector/distributor roads, and ramps. The arterial links included the approaches to each interchange within each Study Area Corridor

Highway post-processing involves three stages:

- Refinement of the raw link volumes, which is done with the direct output from the model for the ADT volumes;
- Calculation of the turning movements; and
- Derivation of the peak hour link volumes.

For this study, all post-processing activities for refining the highway link ADT volumes and developing turning movement volumes involved procedures outlined in National Cooperative Highway Research Program (NCHRP) Report 255 Highway Traffic Data for Urbanized Area Project Planning and Design (Pedersen et al., 1982) and NCHRP Report 765 Analytical Travel Forecasting Approaches for Project-Level Planning and Design (Horowitz et al., 2014). These technical reports provide a set of procedures for refining "raw" link volumes output directly from the model.
Iterative proportional fitting (IPF) methods outlined in NCHRP 765 and TRR 1287 Model of Turning Movement Propensity (Furth, 1990) were used to estimate 2040 daily turning movement volumes at interchanges and intersections. The existing 2015 daily ramp and turning movement volumes were used as the seed for the IPF procedure, and the 2040 link volumes were used as the target inflows and outflows. The IPF routine iteratively adjusted the existing turning movement volumes to balance the turns given the forecasted approach inbound and outbound link volumes

The 2040 daily link and turning movement volumes were manually adjusted as necessary to achieve volume balance between interchanges and intersections by holding volumes at the major interchanges in the study area (I-64 and I664 ; I-64 and I-564; I-664 and VA 164; and I-664 and I-264) constant, then proportionally adding and subtracting ramp volumes between these interchanges. Final 2040 daily forecasts were checked for reasonableness against previous forecasts including the 2012 HRBT EIS and the 2014 High Rise Bridge Environmental Assessment, which extended to the Bowers Hill interchange (FHWA, 2012; FHWA 2014).

Peak hour traffic projections are required for design and analysis purposes. To compute peak hour volumes, the ratios between peak hour and daily traffic volumes (k-factor) for 2015 conditions were computed by dividing the AM and PM peak hour volumes by the corresponding daily volume for each mainline and ramp segment and each intersection turning movement. These k-factors were then applied to the 2040 daily volumes to develop unbalanced 2040 peak hour volumes.

The unbalanced 2040 peak hour link and turning movement volumes were manually adjusted as necessary to achieve volume balance between interchanges and intersections by holding volumes at the major interchanges in the study area constant, similar to the manual balancing of 2040 daily forecasts.

Raw model output for the 2028 opening year was post-processed in the same manner as the 2034 output, with the exception that it was not necessary to extrapolate the daily volumes beyond the model horizon year, as the HRTPO model by design produces 2028 output, based on the roadway network that is expected to be in place in 2028

2.5 TOLL AND MANAGED LANE FORECASTS

Each of the Build Alternatives could accommodate tolls. The alternatives evaluation has incorporated a preliminar assessment of how tolls could potentially result in traffic diversion to other river crossings. The toll assessment has not determined final future traffic volume projections; has not recommended toll rates; and is not appropriate for toll revenue estimation. Moreover, the preliminary toll diversion results were not analyzed for environmenta impact; however, the physical limits of disturbance for each alternative take into account the potential for future tolling, where appropriate. The determination of whether tolls would be implemented as part of any of the alternatives would take place after alternative selection, if appropriate
Three separate toll diversion scenarios have been considered for the Build Alternatives: no tolls, Elizabeth River tolls, and High Occupancy Toll (HOT) lanes. The no toll scenario is the baseline for alternatives development and is bein used to identify environmental impacts and perform the traffic analyses discussed later in this technical report. Under the Elizabeth River toll scenario, tolls would apply to all traffic traveling on the new crossing of the Elizabeth River in Alternatives B, C, or D. The HOT Lane scenario assumes that in addition to the Elizabeth River tolls, any new travel lanes proposed under the Build Alternatives would be HOT lanes. It is assumed that any tolls would be collected electronically by overhead gantry.

3. EXISTING CONDITIONS

Transportation facilities in the Hampton Roads region comprise all modes of surface, air and marine transportation. Hampton Roads is one of the deepest harbors on the US East Coast, sheltering the largest naval base in the world and the sixth largest containerized cargo complex in the United States.
As a result of the abundance of water, the importance of the harbor, and the presence of the military, the region abounds with bridges, tunnels, rail lines, and airport facilities. Norfolk Southern (NS) and CSX Transportation (CSX), the Class I freight railroads which serve the region, have a large commercial base due to the presence of the harbor and the shipping industry. The region is also served by intercity passenger rail service provided by Amtrak as well as a regional transit system. The region contains two international airports and three general aviation airports.
Environmental consequences to transportation facilities are described in Chapter 3 of the Draft SEIS.
3.1 LIMITED ACCESS HIGHWAYS

Limited access highways which comprise the Study Area Corridors are summarized in Table 3-1 and shown in Figure 1-1. They include $1-64,1-664,1-564$, and VA 164. These highways serve a critical transportation function for commuters, interstate and intrastate freight movement, national defense, emergency evacuation, and commercial activities. I-64 crosses Hampton Roads via the HRBT and I-664 crosses via the MMMBT. Both of these crossings are critical links in the regional transportation network connecting Southside and the Peninsula.

Table 3-1: Limited Access Highways

Highway	Functional Classification	Description
I-64	Interstate	I-64 extends from 1.7 miles west of the I-664 interchange in Hampton to approximately 0.5 miles south of the I-564 interchange in Norfolk, a distance of approximately 14 miles, including the 3.5-mile long HRBT.
I-564	Interstate	I-564 is the primary access between NAVSTA Norfolk, NSA Hampton Roads, and the NIT on the west and I-64 on the east, a distance of approximately 3 miles.
I-664	Interstate	I-664 is 20.8 miles in length, beginning at Interchange 1 in Hampton and ending at Interchange 13 in Chesapeake.
VA 164	Other Freeway or Expressway	The Western Freeway extends for 3.4 miles east-west through Portsmouth and Suffolk from Virginia International Gateway Boulevard to I-664.

3.2 CONNECTING STATE ROUTES AND LOCALS ROADS

State routes and local roads which link to the limited access roadways of the Study Area Corridors are summarized in Table 3-2 and shown in Figure 1-1.

Table 3-2: Connecting State Routes and Locals Roads

Numerical Designation	Functional Classification	Roadway Name	Connecting Interstate	Interchange/Exit Number	Locality
US 258	Other Principal Arterial	Mercury Boulevard	I-64	263 A/B	Hampton
SR 167/SR 134	Minor Arterial	LaSalle Avenue/ Armistead Avenue, Rip Rap Road	I-64	265	Hampton

Numerical Designation	Functional Classification	Roadway Name	Connecting Interstate	Interchange/Exit Number	Locality
US 60/SR 143	Minor Arterial	Settlers Landing Road	1-64	267	Hampton
SR 169	Minor Arterial	South Mallory Street	1-64	268	Hampton
US 60	Minor Arterial	$4^{\text {th }}$ View Street	1-64	273	Norfolk
SR 1070	Major Collector	$1^{\text {st }}$ View Street	1-64	Underpass	Norfolk
SR 907	Minor Arterial	Bay Avenue	I-64	274	Norfolk
US 460	Other Principal Arterial	Granby Street	1-64	276/276A	Norfolk
SR 165	Other Principal Arterial	Little Creek Road	1-64	276/276C	Norfolk
SR 337	Other Principal Arterial	Admiral Taussig Boulevard	I-564	Future Exit	Norfolk
SR 406	Other Principal Arterial	International Terminal Boulevard	I-564	Terminal Boulevard	Norfolk
SR 415	Minor Arterial	Power Plant Parkway	I-664	2	Hampton
SR 905	Minor Arterial	Aberdeen Road	I-664	3	Hampton
$\begin{gathered} \text { SR 945/SR } \\ 1020 \end{gathered}$	Major Collector	Chestnut Avenue/Roanoke Avenue	I-664	4	Newport News
SR 143	Other Principal Arterial	Jefferson Avenue	I-664	5	Newport News
US 60	Other Principal Arterial	Warwick Boulevard $/ 26^{\text {th }}$ Street	I-664	6	Newport News
---	Ramps	Terminal Avenue	I-664	7	Newport News
SR 135	Minor Arterial	College Drive	I-664	8A/B	Suffolk
SR 133	Major Collector	New Town Point Road	I-664	Overpass	Suffolk
US 17/VA164	Other Freeway/Expressway	Western Freeway/Western Branch Boulevard	I-664	9A/B	Suffolk
SR 947	Minor Arterial	Pughsville Road/Taylor Road	I-664	10	Chesapeake
SR 337	Minor Arterial	Portsmouth Boulevard	I-664	11A/B	Chesapeake
SR 1036	Major Collector	Dock Landing Road	I-664	12	Chesapeake
US 58	Minor Arterial	Airline Boulevard/West Military Highway	I-664	13A/B	Chesapeake
US 13	Minor Arterial	South Military Highway	I-664	13A/B \& 14	Chesapeake
SR 905	Major Collector	Cedar Lane	SR164	Cedar Lane	Portsmouth
SR 947	Major Collector	Town Point Road	SR164	Town Point Road	Portsmouth

3.3 MAJOR BRIDGES AND TUNNELS

The HRBT is a four-lane facility with two, two-lane tunnels under the Hampton Roads channel shipping lanes, two man-made tunnel portal islands, and concrete twin trestle bridges on the approaches in both directions. The HRBT first opened in 1957 with the second tunnel added in 1976
The MMMBT opened in 1992 and is a four-lane facility comprised of two, two-lane tunnels with $14^{\prime} 6^{\prime \prime}$ vertical clearance. It has two man-made portal islands with two concrete twin trestle bridges on the south approach and a four-lane concrete trestle bridge on the north approach
3.4 TRANSIT ROUTES AND FACILITIES

Public transportation in the region is provided by Hampton Roads Transit (HRT). HRT serves six cities: Chesapeake, Hampton, Newport News, Norfolk, Portsmouth and Virginia Beach. HRT operates a total of 56 local fixed bus routes, eight regional express commuter bus routes, seven major employer shuttles (e.g. Newport News Shipyard) as well as seasonal routes at the Virginia Beach oceanfront. In Fiscal Year 2015, HRT provided a total of 14.2 million unlinked passenger trips on its fixed route buses which includes the local bus routes, regional commuter express routes, and employer shuttles. Within its fixed route service area, HRT also provides complementary paratransit bus service in compliance with the Americans with Disabilities Act. HRT reported a total of 324,000 trips on its paratransit buses in fiscal year 2015.
In addition to fixed route and paratransit bus service, HRT operates "the Tide," a light-rail system which extends 7.4 miles from the Eastern Virginia Medical Center complex east through downtown Norfolk to Newtown Road at the border of Virginia Beach. HRT also operates a ferry route on the Elizabeth River between Norfolk and Portsmouth. The Tide and Elizabeth River ferry service do not currently operate within the Study Area Corridors.
The City of Suffolk does not have a contractual agreement with HRT, and therefore operates its own transit system called Suffolk Transit. Suffolk Transit operates six routes within the City, as well as complementary paratransit service in compliance with the Americans with Disabilities Act. The bus routes operate Monday through Friday on one hour headways.
3.4.1 Metro Area Express (MAX) Routes

The HRT Metro Area Express bus service ("the MAX") is a commuter express bus service which uses the Study Area Corridors to provide regional express bus service between the Peninsula and Southside. Service is provided to Park and Ride facilities throughout the region, connecting commuters to major employment destinations, such as Naval Station (NAVSTA) Norfolk and Northrop Grumman in Newport News. Table 3-3 summarizes the MAX routes which use the Study Area Corridors, and Figure 3-1 illustrates the route patterns. The MAX is the only public transit option that connects the Peninsula and Southside.

Table 3-3: Metro Area Express (MAX) Routes

Route Number	Locality Connection	Route Termini	Study Area Corridors Overlap
$918 / 919$	Virginia Beach - Norfolk	Silver Leaf Park \& Ride to Lafayette River Annex	I-564
922	Chesapeake - Norfolk	Greenbrier Mall to Naval Station Norfolk	I-564
961	Norfolk - Newport News	Downtown Norfolk to Newport News Transit Center	I-64, HRBT, and I-664
965	Newport News - Norfolk	Patrick Henry Mall to Naval Station Norfolk	I-64, HRBT, and I-564
967	Norfolk - Newport News	Military Highway Light Rail Station to Newport News Transit Center	I-664 and MMMBT

3.4.2 Local Bus Routes

Local HRT bus routes intersect the Study Area Corridors in Hampton, Norfolk, Portsmouth, and Newport News via minor arterial roadways and/or major and minor collectors to serve local destinations. These local bus routes do no generally utilize I-64, I-664, I-564 or VA 164. One HRT commuter service bus uses I-664 and I-64 to connect Newport News with Williamsburg. In addition to the routes, the Wards Corner Bus Transfer Station is located near the intersection of Granby Street and Admiral Taussig Boulevard in Norfolk adjacent to the interchange of I-64 and I-564 Suffolk Transit uses I-664 for approximately 4 miles along the "Gold Route," extending from the Bowers Hill area northbound to Pughsville Road. The "Blue Route" travels along the Hampton Roads Parkway and crosses over I-664 in North Suffolk.

Figure 3-1: HRT MAX Routes

3.5 PORT FACILITIES

The Hampton Roads waterbody acts as one large harbor with multiple docking and mooring locations for military, commercial, ship yards, and recreational watercraft. Two designated shipping lanes pass through the harbor and are federally maintained by the US Army Corps of Engineers (USACE): the Newport News Channel and the Norfolk Harbor Reach Channel which are shown in Figure 3-2. The existing depths of the channels are a minimum of 50 feet; however, the Port of Virginia has gained approval to dredge the channels to 55 feet depths. The deeper channels will allow the port facilities to accommodate the largest container ships that pass through the Panama Canal, referred to as Super Post Panamax ships. The harbor and shipping lanes allow commercial shipping lines to access major commercial ports in the region located in Newport News, Norfolk, and Portsmouth. These port facilities are substantial generators of traffic on area roadways resulting from employee work trips and long and short-haul truck traffic on and adjacent to the Study Area Corridors. All of the commercial ports are accessible by roadway, water, and rail, to varying degrees.

The Port of Virginia is a public organization overseen by the Virginia Port Authority to market and operate port facilities in the Commonwealth of Virginia. In the Hampton Roads region, the Port of Virginia operates four deepwater marine terminals and an upriver barge terminal. These facilities are summarized in Table 3-4 and shown in Figure 3-2. Outside of the Hampton Roads region, the Port of Virginia also operates the Port of Richmond and Virginia Inland Port located in Warren County. Collectively, Port of Virginia facilities processed 19.7 million tons of cargo in 2015, with an estimated value of $\$ 60$ billion.
There are three privately-owned port facilities in Hampton Roads that store and transload coal to bulk carrier ships. Kinder Morgan and Dominion Terminal Associates operate port facilities southeast and adjacent to the Newport News Marine Terminal (NNMT) which is owned and operated by the Port of Virginia. Coal is transported to these facilities by CSX where it can be loaded onto ships. Roadway access to these facilities is provided via I-664. NS operates the Lamberts Point Coal Terminal in Norfolk which is located on the Elizabeth River. Lamberts Point Terminal is accessed by US 460 via I-64/I-564.

Newport News Shipbuilding (NNS) is the United States sole designer, builder and refueler of nuclear powered aircraft carriers and one of only two shipyards in the country which designs and builds nuclear powered submarines. NNS is largest industrial employer in Virginia, employing more than 20,000 people.

The Craney Island Marine Terminal is a facility under development by the Port of Virginia with a scheduled completion year of 2028. The terminal will be an automated container terminal with the capability to handle up to 50 percent of its container volume by rail. The existing Commonwealth Railway Line (shortline railroad) will be extended from VA 164 to Craney Island. Extension of the rail line will provide access to the terminal for both NS and CSX, and allow for double-stack intermodal rail service. The terminal will be designed to serve Super Post Panamax class ships and will also have direct access to the interstate highway system.
In addition to commercial and military activities, the harbor provides a safe port and anchorage destination for ships and boats to shelter during storms, and an open area for recreational use. To access the harbor, ships must pass over the HRBT, and to access the western reaches of the James River, they must pass over the MMMBT. Smaller rivers and creeks that feed into Hampton Roads act as harbors as well, including the Hampton River, the Elizabeth River, and the Lower James River.

Table 3-4: Existing Commercial Port Facilities

Port Facility	Owner	Locality	Access	Description
Newport News Shipbuilding (NNS)	Huntington Ingalls Industries	Newport News	Road: I-664 Rail: CSX Marine: Newport News Channel	Shipyard which builds and refuels nuclear powered aircraft carriers and submarines.
Newport News Marine Termina (NNMT)	Port of Virginia	Newport News	Road: I-664 Rail: CSX Marine: Newport News Channel	165-acre general cargo terminal supporting Roll-On/Roll-Off, break-bulk, and warehouse operations. Gated entrance.
Norfolk International Terminals (NIT)	Port of Virginia	Norfolk	Road: Hampton Blvd/I-564 Rail: NS Marine: Norfolk Harbor Reach Channel	567-acre container terminal with six 50^{\prime} deep berths and 14 Super Post Panamax ship-to-shore cranes. Current operations rely primarily on straddle carriers. Gated entrance.
Virginia International Gateway (VIG)	Port of Virginia	Portsmouth	Road: Hampton Blvd/I-564 Rail: CSX and NS Marine: Norfolk Harbor Reach Channel	231-acre container terminal with three 50^{\prime} deep berths and 8 Super Post Panamax ship-to-shore cranes.
Portsmouth Marine Terminal (PMT)	Port of Virginia	Portsmouth	Road: VA 164/US 58 Rail: CSX, NS and NBPL Marine: Norfolk Harbor Reach Channel	285-acre mixed use terminal with two 43^{\prime} deep berths and 6 Post Panamax ship-to-shore cranes currently allocated to container operations. Primarily an over-the-road truck terminal.
Pier IX VA Terminal	Kinder Morgan	Newport News	Road: 18 th Street Rail: CSX Marine: Newport News Channel	Three-dock marine terminal for the purpose of coal shipping and ground storage with a capacity of 1.4 million tons.
Dominion Coal Shipping and Ground Storage Facility	Dominion Terminal Associates	Newport News	Road: 18 th Street Rail: CSX Marine: Newport News Channel	Coal shipping and ground storage facility with a storage capacity of 1.7 million tons.
Lamberts Point Coal Terminal	Norfolk Southern	Norfolk	Road: US 460/I-64 Rail: NS Marine: Norfolk Harbor Reach Channel	NS-served and operated transshipment coal terminal located on the Elizabeth River.

Figure 3-2: Port Facilities and Freight Rail Network

Military vessels use the harbor to access NAVSTA Norfolk, the Naval Supply Center, the Coast Guard base, and Navy Shipyard in Portsmouth. These military installations are shown in Figure 3-2. The Ports for National Defense Program is a program established by the Department of Defense (DoD) to identify and asses the adequacy and responsiveness of defense-important infrastructure at ports that support DoD deployments. The Program identifies the Port of Virginia facilities as a designated strategic seaport
3.6 FREIGHT RAILROAD NETWORK

With the regional importance and location of the Port of Virginia, the freight rail network is critical to the local economy and goods movement. The Hampton Roads region is served by two Class I freight railroad operators and three Class III shortline railroads. These railroads serve the port facilities and other businesses along the routes. Goods and natural resources are brought by rail to Hampton Roads to be exported, and imports are distributed nationwide via rail lines that service the marine terminals in Hampton Roads. The freight rail network within and adjacent to the Study Area Corridors is shown in Figure 3-2 and summarized in Table 3-5.

Table 3-5: Freight Railroad Network

Freight Rail Corridor	Owner(s)	Termini	Description
Peninsula Subdivision	CSX	Richmond-Newport News	74-mile Class I freight rail corridor serving the
NNMT.			

Corporation.
The primary interstate and intrastate rail corridors in the Hampton Roads region are the Peninsula and Portsmouth Subdivisions which are owned and operated by CSX. and the Norfolk District which is owned and operated by NS in Southside. The shortline railroads which operate in the Hampton Roads region complement and facilitate long-haul freight movements carried by NS and CSX outside the region and state. These railroad corridors cross and parallel the Study Area Corridors as shown in Figure 3-2.
3.7 INTERCITY PASSENGER RAIL SERVICE (AMTRAK)

Intercity passenger rail service in the Hampton Roads region is provided by the National Railroad Passenger Corporation (Amtrak). Amtrak operates its Northeast Regional route with service to Norfolk and Newport News. The Northeast Regional route provides service north to Washington, DC; New York City; and Boston, Massachusetts.

Amtrak provides two daily round trips from the Newport News train station and one daily round trip from the Norfolk train station. Amtrak uses the CSX Peninsula Subdivision to serve the Newport News train station on Warwick Boulevard, and the NS Norfolk District rail corridor to serve Norfolk train station on Park Avenue. Amtrak also provides a connecting bus shuttle from Norfolk to Newport News for those passengers who want to board at the Newport News Station. Amtrak routes and stations are shown in Figure 3-3 and summarized in Table 3-6.

Table 3-6: Amtrak Routes

Route Name	Station	Daily Round Trips	Annual Ridership (2015)	Description
Northeast Regional	Newport News	2	348,581	Daily roundtrips to Washington, DC/Northeast Corridor terminating in Boston, MA (12-14 hour travel time). Route travels the CSX Peninsula Subdivision.
Northeast Regional	Norfolk	1	153,857	Daily roundtrip to Washington, DC/Northeast Corridor terminating in New York City (8 hour travel time). Connecting bus shuttle to Newport News Amtrak station.

3.8 AIRPORTS

The Hampton Roads region is served by two commercial airports and three general aviation airports. These airports are summarized in Table 3-7 and shown in Figure 3-3. Norfolk International Airport is the largest airport in the region serving an estimated 4 million passenger trips annually and 68 million pounds of air cargo. The Norfolk Airport Authority reports that the airport directly employs 1,700 people, and indirectly generates as many as 12,500 jobs for the region. The Peninsula Airport Commission reports that Newport News/Williamsburg International Airport served 524,518 passenger trips in 2014. Taken together, the airports are substantial generators of roadway traffic in the region resulting from employee work trips and travelers using the airports.

Table 3-7: Commercial and General Aviation Airports

Airport Name	Owner	Location	Description
Norfolk International Airport (ORF)	Norfolk Airport Authority	Norview Avenue Norfolk, VA 23518	Public small hub commercial airport
Newport News/ Williamsburg International Airport (PHF)	Peninsula Airport Commission	900 Bland Blvd Newport News, VA 23602	Public non hub commercial airport
Hampton Roads Executive Airport (PVG)	Virginia Aviation Associates	5172 West Military Highway Chesapeake, VA 23321	Private high-capacity general aviation airport
Chesapeake Regional Airport (CPK)	Chesapeake Airport Authority	2800 Airport Drive Chesapeake, VA 23323	Public regional general aviation airport
Suffolk Executive Airport (SFQ) City of Suffolk	1200 Gene Bolton Drive Suffolk, VA 23434	Public regional general aviation airport	
Source: Federal Aviation Administration, 2014.			

3.9 EMERGENCY EVACUATION ROUTES

As described in the Purpose and Need (Chapter 1 of the SEIS), one need for the project is to enhance emergency evacuation capabilities of the region. In the event of a hurricane, the Virginia Department of Emergency Management (VDEM) has designated evacuation routes for the region which are summarized in Table 3-8 and shown in Figure 3-4. These evacuation routes include the Study Area Corridors of I-64 and I-664.

The HRBT and MMMBT may be overtopped by water during extreme storm events. The Study Area Corridor tunnels are equipped with storm doors which can be shut to prevent flooding. While this preserves the tunnel structures, it would close off a vital route for evacuees and/or emergency personnel. Another impediment to evacuation is that the Hampton Roads region is low lying, and US 17, US 460, and US 58 are prone to flooding, further exacerbating evacuation conditions even after evacuees make it past the available water crossings.
Norfolk and Virginia Beach residents located north of I-264 are directed to use I-64 and the HRBT in the event of an evacuation. However, because of increased regional population, limited water crossings for large area evacuations, and peak congestion during typical daily use already occurring on designated emergency routes, the ability to effectively evacuate the population is hampered. The study routes and HRBT and MMMBT crossings are known bottlenecks during daily traffic and would be more so during evacuations.

Table 3-8: Emergency Evacuation Routes

Route Name	Designated Jurisdictions	Description
Peninsula	Hampton Newport News	Evacuation route for Peninsula jurisdictions using the following routes: - I-64 - I-664 North - US Route 17 North - US Route 60 West - SR 143
Southside	Suffolk Chesapeake Portsmouth Virginia Beach	Evacuation route for Southside jurisdictions using the following routes: - I-64 and I-264 - I-664 MMMBT - US Route 17 North - US Route 58 West - US Route 460 West - SR 10 West
Norfolk and Virginia Beach	Norfolk Virginia Beach	Evacuation of Southside jurisdictions via I-64 operating with reversed eastbound lanes (westbound).

Figure 3-4: Emergency Evacuation Routes

3.10 BICYCLE AND PEDESTRIAN NETWORK

There are no bicycle or pedestrian facilities on the Study Area Corridors nor do any bicycle or pedestrian facilities link Southside and the Peninsula. State law generally does not permit bicyclists to ride on interstate and certain controlled access highways, unless the operation is limited to bicycle or pedestrian facilities that are barrier separated from the roadway and automobile traffic.
3.11 EXISTING TRAFFIC VOLUMES

Existing 2015 peak hour volumes and Average Daily Traffic volumes were provided in Figure 2-1 and Figure 2-2. The balanced daily volumes represent average weekday conditions, although higher weekend and seasonal volumes have been observed on the HRBT
3.12 CRASH ANALYSIS

Crash data for the years 2012-2014 were analyzed for the following roadway sections:

- I-64 from I-664 to I-564 (milepost 264.64 to 277.25)
- I-664 from I-64 to I-264 (milepost 0.00 to 20.68)
- I-564 from SR 337 to I-64 (milepost 0.00 to 3.00)
- VA 164 from I-664 to US 58 (milepost 0.85 to 7.04)

Crash data were analyzed by quarter-mile segments and referenced to major landmarks along each segment (tunnel portals, major interchanges, etc.). Crash data were tabulated by crash type, severity, pavement condition and time of day. Crash rates (calculated per 100 Million Vehicle Miles Traveled) were calculated for each quarter-mile segment. The analysis summaries for each section are presented in Figures 3-5 through 3-12.

In general, the highest crash rates (in crashes per 100 Million Vehicle Miles Traveled) occur on eastbound and westbound I-64, with rates of 152 and 135 crashes per 100 Million Vehicle Miles Traveled, respectively. These rates are significantly higher than those experienced elsewhere within the study area. Likewise, rear-end and property damage only crashes are most prevalent along I-64; the share of rear-end crashes on other facilities is lower, while damage only crashes are most prevalent along $1-64$; the share of rear-end crashes on
the share of injury crashes is higher. Details on the crash analyses are provided below.

3.12.1 Eastbound I-64 Crash Analysis

A total of 930 crashes were reported along eastbound I-64 during the study period. As shown in Figure 3-5, crashes are primarily rear-end crashes (71%), with fixed-object (16%) and sideswipe crashes (7%) being the next most frequent.
Along eastbound $1-64$, there is a pronounced increase in the number of crashes at mile point 268.75 , which corresponds to the entry point of the elevated structure of the HRBT, where the number of lanes is reduced from three to two. A total of five (5) fatal crashes were reported along the entire segment, which is the highest number of all segments that were analyzed. Two-hundred sixty-five (265) crashes (28%) resulted in injuries, while the remaining 660 (71%) crashes resulted in property damage only.
Approximately 47 percent of all crashes occurred during the peak periods between 6 AM -9 AM and 3 PM -6 PM. More than 80 percent of all crashes occurred on dry pavement.
The average crash rate along eastbound I-64 is 152 crashes per 100 Million Vehicle Miles Traveled; there are five quarter-mile segments along eastbound $I-64$ that experience a crash rate more than double the average crash rate. The critical segments are for the most part located on the approaches to the HRBT.

3.12.2 Westbound I-64 Crash Analysis

A total of 800 crashes were reported along westbound I-64 during the study period. As shown in Figure 3-6, crashes are primarily rear-end crashes (74%), with fixed-object (15%) and sideswipe crashes (7%) being the next most frequent.

Although there are some areas along westbound $\mathrm{I}-64$ where there is an increase in crash frequency, the magnitudes of the increases are less pronounced than along eastbound l-64. Areas where there is an increase in crash frequencies along westbound I-64 are near Bayville Street, just upstream from the entry point to the elevated structure of the HRBT (mile point 272.75) and mile point 271.25, which corresponds to the westbound tunnel portal. There was one (1) fatal crash reported along this segment. Two-hundred seventeen (217) crashes (27\%) resulted in injuries, while the remaining 582 (73%) crashes resulted in property damage only.

Approximately 31 percent of all crashes occurred during the peak periods between 6 AM - 9 AM and 3 PM - 6 PM but the time period that experienced the highest number of crashes was 12 PM - 3 PM (187 crashes, or 23% of all crashes). More than 80 percent of all crashes occurred on dry pavement.

The average crash rate along westbound I-64 is 135 crashes per 100 Million Vehicle Miles Traveled; there are six quarter-mile segments along westbound I-64 that experience a crash rate more than double the average crash rate The critical segments are for the most part located on the approaches to the HRBT.
3.12.3 Eastbound I-664 Crash Analysis

A total of 531 crashes were reported along eastbound I-664 during the study period. As shown in Figure 3-7, crashes are primarily rear-end crashes (54%), with fixed-object (24%) and sideswipe crashes (11%) being the next most frequent.

Crashes along eastbound I-664 are concentrated on the approaches to the MMMBT and throughout the MMMB elevated structure and tunnel. All nine (9) critical quarter-mile segments where the average crash rate is more than double the crash rate for the entire eastbound I-664 study area are within this area of the MMMBT. There were three (3) fatal crashes reported along this segment. One-hundred fifty-three (153) crashes (29\%) resulted in injuries, while the remaining 375 (71%) crashes resulted in property damage only.

Approximately 52 percent of all crashes occurred during the peak periods between 6 AM - 9 AM and $3 P M-6 P M$ Close to 80 percent of all crashes occurred on dry pavement.

The average crash rate along eastbound I -664 is 71 crashes per 100 Million Vehicle Miles Traveled; as mentioned above, there are nine quarter-mile segments along eastbound I-664 that experience a crash rate more than double the average crash rate.
3.12.4 Westbound I-664 Crash Analysis

A total of 588 crashes were reported along westbound I-664 during the study period. As shown in Figure 3-8 crashes are primarily rear-end crashes (56%), with fixed-object (25%) and sideswipe crashes (11%) being the next most frequent.

Unlike crashes along eastbound I-664, there are two quarter-mile segments areas along westbound I-664 that experienced a significantly higher number of crashes between 2012 and 2014 relative to the rest of the section These segments are located at mile points 6.0 and 9.0 , which correspond to the entry and exit points of the MMMBT. There were three (3) fatal crashes reported along this segment. One-hundred seventy-three (173) crashes (29%) resulted in injuries, while the remaining $412(70 \%)$ crashes resulted in property damage only.

Approximately 44 percent of all crashes occurred during the peak periods between 6 AM - 9 AM and $3 P M-6$ PM. Close to 80 percent of all crashes occurred on dry pavement.
The average crash rate along westbound I-664 is 71 crashes per 100 Million Vehicle Miles Traveled; as mentioned above, there are two quarter-mile segments along westbound I-664 that experience a crash rate more than double the average crash rate.
3.12.5 Eastbound I-564 Crash Analysis

A total of 65 crashes were reported along the 3-mile section of eastbound I-564 during the study period. As shown in Figure 3-9, crashes are primarily rear-end crashes (45%), with fixed-object (26%) and sideswipe crashes (12%) being the next most frequent. Rear-end crashes on l-564 comprise the lowest share of crashes of all Study Area Corridors, which may indicate a lower degree of congestion compared to other facilities for which crash analyses were performed.
Crashes are concentrated near the l-64 interchange. There were no fatal crashes reported along this segment. Sixteen (16) crashes (25\%) resulted in injuries, while the remaining 49 (75%) crashes resulted in property damage only.
Approximately 45 percent of all crashes occurred during the afternoon peak period between 3 PM and 6 PM. This reflects the heavy directionality of traffic volumes leaving the Navy base in the afternoon. Approximately 65 percent of all crashes occurred on dry pavement
Due to the short distance of this section of I-564, average crash rates were not computed
3.12.6 Westbound I-564 Crash Analysis

A total of 71 crashes were reported along the 3 -mile section of westbound I-564 during the study period. As shown in Figure 3-10, crashes are primarily rear-end crashes (61\%), with fixed-object (17\%) and sideswipe crashes (13\%) being the next most frequent.

Crashes are concentrated near the I-64 interchange. There were no fatal crashes reported along this segment. Twenty-four (24) crashes (34\%) resulted in injuries, while the remaining 47 (66\%) crashes resulted in property damage only.

Approximately 46 percent of all crashes occurred during the morning peak period between 6 AM and 9 AM. This reflects the heavy directionality of traffic volumes entering the Navy base in the morning (and leaving it in the afternoon). Approximately 70 percent of all crashes occurred on dry pavement.

Due to the short distance of this section of I-564, average crash rates were not computed
3.12.7 Eastbound VA 164 Crash Analysis

A total of 73 crashes were reported along the 7-mile section of eastbound VA 164 during the study period. As shown in Figure 3-11, crashes are primarily rear-end crashes (42\%), with fixed-object (21\%) and sideswipe crashes (21\%) being the next most frequent.
Along eastbound VA 164, there is a pronounced increase in the number of crashes between mile points 5.0 and 6.25, which corresponds to the area between the Terminal Road, West Norfolk Road, and US 58 (Pinners Point) interchanges, which are key access points to the Port of Virginia. There were no fatal crashes; 29 crashes (40\%) resulted in injuries, while the remaining $44(60 \%)$ crashes resulted in property damage only. Crashes along both eastbound and westbound VA 164 involve a larger percentage of injuries than crashes along all other Study Area Corridors, which may indicate higher travel speeds and possibly the involvement of larger vehicles (trucks).

Approximately 48 percent of all crashes occurred during the peak periods between $6 \mathrm{AM}-9 \mathrm{AM}$ and $3 \mathrm{PM}-6 \mathrm{PM}$. Approximately 65 percent of all crashes occurred on dry pavement.
The average crash rate along eastbound VA 164 is 22 crashes per 100 Million Vehicle Miles Traveled; there are five quarter-mile segments along eastbound VA 164 that experience a crash rate more than double the average crash rate. The critical segments are for the most part located near the US 58 (Pinners Point) interchange
3.12.8 Westbound VA 164 Crash Analysis

A total of 55 crashes were reported along westbound VA 164 during the study period. As shown in Figure 3-12, crashes are primarily rear-end crashes (38\%), with fixed-object (27%) and sideswipe crashes (11%) being the nex most frequent.
Westbound VA 164 experiences a comparatively large increase in crashes at mile point 5.75 , which is near the West Norfolk Road interchange, and approaching the l-664 interchange. There were no fatal crashes reported along this segment. Twenty-seven (27) crashes (49\%) resulted in injuries, while the remaining $28(51 \%)$ crashes resulted in property damage only. This is the highest percentage of injury crashes of all roadways being analyzed
Crashes are distributed relatively evenly throughout the day. Approximately 33 percent of all crashes occurred during the peak periods between 6 AM -9 AM and 3 PM - 6 PM, but the time period that experienced the highest number of crashes was 12 PM - 3 PM (10 crashes, or 18% of all crashes). Approximately 65 percent of all crashes occurred on dry pavement.
The average crash rate along westbound VA 164 is 16 crashes per 100 Million Vehicle Miles Traveled; there ar seven quarter-mile segments along westbound VA 164 that experience a crash rate more than double the average crash rate. The critical segments coincide with the locations where the highest number of crashes occur.

3.13 ASSESSMENT OF VEHICLE SPEEDS

As part of the HCRS SEIS, INRIX speed data for the I-64 and I-664 corridors within the study area were analyzed. INRIX provides average speed data for individual segments (generally between consecutive ramp terminals) in 15minute increments. Corridor data from March 2011 - June 2011 and March 2015 - June 2015 were analyzed. Data from two different years were analyzed to assess whether typical weekday travel speeds have decreased since the HBRT study was performed in 2011. Speeds for each segment and each 15-minute period were averaged and crosstabulated by mile point and time period. The results are shown as speed contour plots in Figure 3-13 and Figure 314. These figures show the average speed on Tuesdays, Wednesdays and Thursdays along the I-64 and I-664 corridors between 5:00 AM and 9:00 PM. In these figures, the mile points are shown on the vertical axis, and time of day is shown along the horizontal axis. The color gradations indicate average speed, with green being the highest and red being the lowest speed.
As shown in Figure 3-13, along eastbound I-64, the 2011 and 2015 data show that two pronounced periods with slow traffic occur. Speeds begin to decrease approximately near mile point 266 and do not begin to increase until mile point 270. In 2015, during the AM peak period, speeds through the HRBT fall below 40 Miles Per Hour (MPH) as early as 6:30 AM and remain below 40 MPH until 10:00 AM. During the PM peak, speeds fall below 40 MPH as early as 3:00 PM and remain below 40 MPH until 6:45 PM. Speeds are below 40 MPH for as many as 9 hours between the times of 5:00 AM and 9:00 PM, and below 20 MPH for as many as 4.5 hours during the day.
Comparing the 2011 and 2015 speeds, the periods of low speeds (red and yellow areas) span a longer period of time in 2015 during the AM period and in particular during the PM period. In addition, PM speeds in 2015 are significantly lower (darker red) for a longer period of time compared to 2011, indicating that congestion has increased significantly between 2011 and 2015.
Likewise, westbound I-64 experiences the lowest speeds during the PM peak, although speeds on the HRBT are low throughout the day. Speeds fall below 40 MPH as early as 6:30 AM and remain below 40 MPH for most of the day (through 7:30 PM). Speeds are below 40 MPH for as many as 12 hours between the times of 5:00 AM and 9:00 PM, and below 20 MPH for as many as 2.5 hours.

Comparing the 2011 and 2015 data in Figure 3-13, it is clear that severe congestion is occurring over a longer distance and in 2015 consistently starts as far south/east as the l-564 interchange.
Figure 3-14 shows the speed profile for I-664 between I-64 and I-264. In 2015, speeds at the southern terminus of the study segment fall below 40 MPH by 3:30 PM and remain below 40 MPH until 5:45 PM. More significantly, whereas in 2011 congestion along eastbound I-664 occurred over an approximately one-mile segment, in 2015 the congested area has almost tripled in length. Along westbound l-664, minor congestion is occurring just north of the -264 interchange.
Appendix P contains photographs that illustrate the level of congestion along I-64 during the peak periods.

3.14 CAPACITY ANALYSIS

The 2015 peak hour volumes shown in Figure 2-1 were analyzed using the methodologies outlined in Section 2.3. The results of these mainline and intersection capacity analyses are provided in Figure 3-15.
As shown in Figure 3-15, the capacity analyses confirm the existing areas that experience congestion and poor traffic operations.
Along I-64, LOS F operations occur in both directions during the AM and PM peak hours on the HRBT. Traffic volumes reach capacity (LOS E) in isolated locations along the Study Area Corridor, including the weaving segment in both directions west of LaSalle Avenue, and westbound I-64 near Bay Avenue and Granby Street.
Along I-664, poor operations occur during the AM peak hour in the westbound direction of the MMMBT as well as through the Bowers Hill interchange area. During the PM peak hour, LOS F operations occur on the MMMBT in the eastbound direction, and again through the Bowers Hill interchange in both the eastbound and westbound directions.
Generally acceptable operating conditions prevail on VA 164 during both peak hours; along I-564, near-capacity conditions (LOS E) are experienced during the PM peak hour in the westbound direction. Along I-564, poor operating conditions occur during the PM peak hour in the eastbound direction approaching the off-ramps to Little Creek Road.

Numbered items correspond to freeway segments, evaluated using HCS
100 series $\quad 1.64$ Eastbound
300 series
400 series
${ }_{-644}^{-64 \text { Westbound }}$
1.564 Westbound

Lettered items correspond to intersections, evaluated using Synchro

	HRCS SEIS Hamptoon Roads Crossing Study SEIS	
	2015 Existing Level of Service I-64 Corridor	
	April 2017	Figure 3-15.2

Legend	
$\mathrm{X}(\mathrm{X})$	AM (PM) Level of Service

Numbered items correspond to freeway segments, evaluated using HCS
500 series
600 series 1-664 Eastbound/Southbound
$1-664$ Westbound/Northbound

Lettered items correspond to intersections, evaluated using Synchro

	HRCS SEIS	
	2015 Existing Level of Service I-664 Corridor	
	April 2017	Figure 3-15.8

	HRCS SEIS Hampton Roads Crossing Study SE	
	2015 Existing Level of Service I-664 Corridor	
	April 2017	Figure 3-15.10

Legend	
$\mathrm{X}(\mathrm{X})$	AM (PM) Level of Service

AM(MN)Leve orsenvice
Numbered items correspond to freeway segments, evaluated using HCS
700 series
VA 164 Eastbound
VA 164 Westbound
800 series
Lettered items correspond to intersections, evaluated using Synchro

	HRCS SEIS Hampton Roads Crossing Study SEIS	
	2015 Existing Level of Service VA 164 Corridor	
	April 2017	Figure 3-15.12

4. ALTERNATIVES CONSIDERED

A detailed discussion on alternatives development, alternatives considered and alternatives not carried forward is included in the Chapter 2 of the Draft SEIS. Chapter 2 of the Draft SEIS is incorporated by reference in the HRCS Traffic and Transportation Technical Report.

5. DESIGN YEAR 2040 FORECASTS AND ANALYSES

As discussed in Section 2.4, traffic forecasts were developed using the Hampton Roads TPO travel demand model. The model output was post-processed to obtain design year 2040 daily and peak hour volumes. These peak hour volumes were analyzed to obtain peak hour Level of Service (LOS) and estimated end-to-end travel time for each Study Area Corridor. The results of these analyses are summarized in Section 5.1; detailed analysis results are provided in Sections 5.3 through 5.7.
In addition, upon request from some of the stakeholder agencies, raw model output (for the horizon year 2034) was aggregated to provide additional insight in the operational benefits of each alternative. This information is presented in Section 5.2.
5.1 SUMMARY

A summary of daily traffic volumes on key roadway links within the study area under each of the alternatives is provided in Table 5-1. A comparison of daily traffic volumes on the HRBT and MMMBT for 2015 and 2040 conditions for each alternative is provided in Figure 5-1. A summary of projected LOS is provided in Table 5-2. A summary of estimated travel times along key Study Area Corridors between major interchanges is provided in Table 5-3. It should be noted that the travel time estimates were developed from planning-level capacity analysis output and are intended only to indicate relative changes in travel time between alternatives. Additional and/or different segments could be reported in the Final SEIS depending on the Preferred Alternative

Table 5-1: 2040 Daily Traffic Volumes at Key Roadway Segments

Roadway Segment	$\mathbf{2 0 1 5}$	$\mathbf{2 0 4 0}$ No-Build	$\mathbf{2 0 4 0}$ Alt A	$\mathbf{2 0 4 0}$ Alt B	$\mathbf{2 0 4 0}$ Alt C	$\mathbf{2 0 4 0}$ Alt D
HRBT	91,000	112,200	137,700	133,400	103,600	$\mathbf{1 2 4 , 2 0 0}$
MMMBT, north of I-664C	69,300	90,700	89,200	83,100	127,700	114,900
MMMBT, south of I-664C	69,300	90,700	89,200	83,100	122,100	120,700
VA 164*	49,000	65,600	64,000	78,400	54,000	55,700
VA 164C	-	-	-	51,800	29,400	31,000
I-564C	-	-	-	51,800	89,600	86,400
I-664C	-	-	-	-	70,800	65,800

* Between the Towne Point Road and College Drive Interchanges

Table 5-2: 2040 Projected LOS at Key Roadway Segments

Roadway Segment	AM Peak											
	Eastbound						Westbound					
	Existing	$\begin{gathered} 2040 \\ \text { NB } \end{gathered}$	$\begin{aligned} & 2040 \\ & \text { Alt A } \end{aligned}$	$\begin{aligned} & 2040 \\ & \text { Alt B } \end{aligned}$	$\begin{aligned} & 2040 \\ & \text { Alt C } \end{aligned}$	$\begin{aligned} & 2040 \\ & \text { Alt D } \end{aligned}$	Existing	$\begin{gathered} 2040 \\ \text { NB } \\ \hline \end{gathered}$	$\begin{aligned} & 2040 \\ & \text { Alt A } \end{aligned}$	$\begin{aligned} & 2040 \\ & \text { Alt B } \end{aligned}$	$\begin{aligned} & 2040 \\ & \text { Alt C } \end{aligned}$	$\begin{aligned} & 2040 \\ & \text { Alt D } \end{aligned}$
HRBT	F	F	F	F	F	E	F	F	F	F	F	E
MMMBT	C	C	C	C	A	A	F	F	F	F	B	B
VA 164	C	D	D	C	C	B	B	C	C	B	B	B
VA 164C	-	-	-	C	A	A	-	-	-	B	A	A
I-564C	-	-	-	C	C	C	-	-	-	B	C	C
I-664C	-	-	-	-	C	C	-	-	-	-	C	B
Roadway Segment	PM Peak											
	Eastbound						Westbound					
	Existing	2040	2040	2040	2040	2040	Existing	2040	2040	2040	2040	2040
		NB	Alt A	Alt B	Alt C	Alt D		NB	Alt A	Alt B	Alt C	Alt D
HRBT	F	F	F	F	F	E	F	F	F	D	F	D
MMMBT	F	F	F	F	B	B	C	F	F	F	A	A
VA 164	C	C	C	C	C	B	C	D	D	C	C	B
VA 164C	-	-	-	B	A	A	-	-	-	C	A	A
I-564C	-	-	-	B	C	C	-	-	-	C	D	C
I-664C	-	-	-	-	C	C	-	-	-	-	C	C

Figure 5-2 shows the mainline volume for each roadway segment along the Study Area Corridors for the Existing, 2040 No-Build, and 2040 Build Alternatives.

Figure 5-3 presents a summary of the projected mainline LOS. This summary is provided in the same format as the volume exhibit in Figure 5-2, and shows the projected mainline LOS as well as the projected LOS for each merge, diverge, and weaving area along all Study Area Corridors for each alternative. Mainline average travel speeds, which are the basis for summaries in Table 5-3, are presented in Figure 5-4.

Table 5-4 presents the intersection LOS for all ramp terminal intersections for the Existing, 2040 No-Build, and 2040 Build Alternatives.

Table 5-3: 2040 Estimated End-to-End Travel Times by Study Area Corridor

Segment	Direction	AM Peak Travel Time (minutes/vehicle)					
		Existing	2040 NB	2040 Alt A	2040 Alt B	2040 Alt C	2040 Alt D
1-64	Eastbound	18.3	20.2	18.8	18.6	18.7	17.1
	Westbound	17.3	20.3	17.3	17.2	18.0	15.9
$\begin{gathered} \text { I-664 (I-64 to VA } \\ 164) \end{gathered}$	Eastbound	15.1	15.0	15.0	14.9	13.9	13.8
	Westbound	16.3	19.5	18.4	18.8	14.4	14.4
$\begin{aligned} & \text { I-664 (VA } 164 \text { to I- } \\ & 264) \end{aligned}$	Eastbound	7.7	7.9	7.8	7.8	7.6	7.6
	Westbound	7.9	8.1	8.1	8.1	7.8	7.8
VA 164	Eastbound	6.4	6.5	6.5	6.4	6.4	6.4
	Westbound	6.1	6.1	6.1	6.1	6.2	6.1
I-564; I-664 and I564 Connectors	Eastbound	-	-	-	-	7.9	7.9
	Westbound	-	-	-	-	8.6	8.5
I-564; I-564 and VA 164 Connectors	Eastbound	-	-	-	10.5	10.4	10.3
	Westbound	-	-	-	10.2	9.9	9.8
Segment	Direction	PM Peak Travel Time (minutes/vehicle)					
		Existing	2040 NB	2040 Alt A	2040 Alt B	2040 Alt C	2040 Alt D
1-64	Eastbound	17.7	20.7	18.5	18.3	18.3	17.0
	Westbound	16.6	19.0	16.6	14.6	18.0	14.5
$\begin{gathered} \text { I-664 (I-64 to VA } \\ 164) \end{gathered}$	Eastbound	17.7	20.6	19.8	19.6	13.8	13.8
	Westbound	14.6	14.8	14.7	14.7	16.0	15.5
$\begin{aligned} & \text { I-664 (VA } 164 \text { to I- } \\ & 264) \end{aligned}$	Eastbound	7.7	7.9	7.8	7.8	7.6	7.6
	Westbound	7.8	7.9	7.9	7.9	7.8	7.8
VA 164	Eastbound	6.4	6.4	6.4	6.3	6.3	6.3
	Westbound	6.1	6.2	6.1	6.2	6.2	6.2
I-564; I-664 and I564 Connectors	Eastbound	-	-	-	-	9.3	9.3
	Westbound	-	-	-	-	8.1	8.1
I-564; I-564 and VA 164 Connectors	Eastbound	-	-	-	11.0	11.7	11.7
	Westbound	-	-	-	9.9	9.4	9.4

554 Pm Peak volumes alternative comparison

\cdots	$\begin{aligned} & \text { us.s. Department of Transporation } \\ & \text { Federal Highway } \\ & \text { Administration } \end{aligned}$	HRCS SEIS Hampton Roads Crossing Study SEIS	
		I-664 Alternatives Comparison AM Peak Hour Volumes	
		April 2017	Figure 5-2.3

	VDOT	HRCS SEIS Hampton Roads Crossing Study SEIS	
		I-664 Alternatives Comparison PM Peak Hour Volumes	
		April 2017	Figure 5-2.4

 -

VDat
L. L. Departmenotor Transoptation

Administration

HRCS SEIS
Hampton Roads Crossing Study SEIS
I-564 Alternatives Comparison Level Of Service


```
{
```


VDOT
U.s. opearmentor Transopotation
Federal Highway

Federal
Adminishway

I-564 Alternatives Comparison

Speed

Table 5-4: 2040 Intersection Capacity Analyses Results

Intersection	Control Type	Existing				2040 No-Build				2040 Alternative A				2040 Alternative B				2040 Alternative C				2040 Alternative D			
		AM		PM																					
		Delay (s)	LOS																						
I-64 Interchanges																									
VA-134 at I-64 WB On Ramp*	Signalized	17.9	B	19.1	B	21.5	C	22.9	C	20.8	C	23.9	C	22.3	C	24.6	C	21.9	C	24.1	C	20.4	C	24.0	C
LaSalle Ave at Armistead Ave*	Signalized	19.7	B	23.8	C	22.3	C	27.2	C	22.6	C	26.9	C	22.7	C	27.5	C	21.8	C	26.4	C	22.3	C	26.8	C
I-64 EB Off Ramp at Rip Rap Rd	Signalized	15.3	B	17.5	B	16.6	B	18.2	B	20.2	C	24.3	C	17.0	B	19.4	B	17.8	B	20.7	C	18.6	B	21.0	C
Settlers Landing Rd at E Tyler St	Signalized	24.5	C	17.4	B	31.3	C	26.9	C	31.1	C	25.2	C	33.7	C	27.9	C	29.0	C	23.6	C	32.7	C	26.8	C
Settlers Landing Rd at I-64 SB On Ramp	Yield Control***	11.5	B	13.9	B	14.7	B	27.4	D	12.5	B	17.7	C	13.0	B	17.4	C	11.5	B	16.1	C	12.3	B	16.5	C
Settlers Landing Rd at I-64 NB On Ramp	Signalized	21.3	C	23.2	C	36.2	D	72.1	E	34.6	C	79.0	E	34.5	C	72.7	E	57.1	E	87.0	F	37.4	D	96.4	F
I-64 SB Ramps at S Mallory St	Signalized	8.4	A	98.6	F	10.7	B	125.7	F	10.3	B	63.4	E	11.4	B	118.0	F	11.0	B	58.0	E	11.2	B	67.5	E
I-64 NB Ramps at S Mallory St	Signalized	72.2	E	19.9	B	104.5	F	31.9	C	56.8	E	28.0	C	76.0	E	30.0	C	45.0	D	22.5	C	77.0	E	32.2	C
I-64 SB Ramps at 4th View St	Stop Control**	7.5	A	14.1	B	9.3	A	172.1	F	14.0	B	422.2	F	21.2	C	441.2	F	7.8	A	68.8	F	29.5	D	446.4	F
I-64 NB Ramps at 4th View St	Stop Control**	11.9	B	95.6	F	13.5	B	220.6	F	13.6	B	310.3	F	14.4	B	360.2	F	12.7	B	116.4	F	14.4	B	229.3	F
US 460 at I-64 NB On Ramp	Yield Control***	15.7	B	12.8	B	15.9	C	13.0	B	30.2	D	20.8	C	27.3	D	19.4	C	18.4	C	13.9	B	21.3	C	17.4	C
1-564 Interchanges																									
I-564 at Bainbridge Ave	Signalized	13.9	B	37.6	D	12.0	B	30.3	C	11.5	B	23.6	C	13.5	B	24.3	C	12.7	B	19.8	B	12.7	B	18.8	B
I-564 at Hampton Blvd****	Signalized	-	-	-	-	-	-	-	-	-	-	-	-	15.6	B	15.3	B	24.5	C	20.6	C	27.1	C	20.0	C
I-664 Interchanges																									
PowhatanPkwy at I-664 North Ramp	Signalized	24.8	C	27.3	C	14.4	B	20.5	C	15.1	B	21.6	C	15.0	B	21.4	C	15.2	B	24.0	C	15.2	B	23.2	C
Powhatan Pkwy at l-664 South Ramp	Signalized	14.2	B	20.3	C	25.1	C	26.7	C	24.8	C	27.3	C	24.6	C	26.5	C	24.5	C	27.3	C	24.6	C	27.6	C
Aberdeen Rd at l-664 North Ramp	Signalized	14.9	B	7.7	A	11.8	B	20.2	C	12.2	B	20.2	C	11.9	B	18.8	B	12.5	B	25.6	C	12.2	B	24.8	C
Aberdeen Rd at I-664 South Ramp	Signalized	10.2	B	12.8	B	26.6	C	7.7	A	26.9	C	7.3	A	26.8	C	7.3	A	26.2	C	7.8	A	26.4	C	9.8	A
Chestnut Ave at I-664 South Off Ramp	Signalized	0.2	A	0.2	A	0.3	A	0.2	A	0.3	A	0.2	A	0.3	A	0.2	A	0.6	A	0.2	A	0.6	A	0.2	A
Chestnut Ave at I-664 North On Ramp	Signalized	3.1	A	13.6	B	4.3	A	18.5	B	3.4	A	15.4	B	3.8	A	16.3	B	3.5	A	18.0	B	3.3	A	17.7	B
Chestnut Ave at 39th St	Signalized	22.1	C	16.9	B	16.4	B	16.7	B	16.2	B	16.4	B	18.3	B	16.2	B	16.2	B	16.3	B	15.8	B	16.0	B
Roanoke Ave at I-664 South On-Ramp	Stop Control**	9.9	A	10.3	B	10.6	B	11.0	B	10.0	B	10.2	B	10.2	B	10.8	B	10.6	B	12.7	B	10.4	B	11.4	B
Roanoke Ave at I-664 North Off-Ramp	Signalized	17.2	B	11.7	B	14.4	B	18.9	B	13.5	B	19.3	B	14.2	B	19.2	B	13.0	B	19.6	B	14.7	B	19.7	B
Roanoke Ave at 39th St	Signalized	10.6	B	8.4	A	22.8	C	17.8	B	21.8	C	17.5	B	22.2	C	19.2	B	22.7	C	19.7	B	21.8	C	18.3	B
Jefferson Ave at 36th St	Signalized	21.2	C	19.5	B	20.6	C	16.7	B	20.7	C	18.0	B	20.3	C	17.1	B	22.2	C	19.6	B	21.8	C	19.0	B
Jefferson Ave at 35th St	Signalized	3.6	A	7.0	A	9.2	A	8.5	A	9.4	A	10.9	B	9.3	A	9.0	A	9.4	A	11.1	B	9.6	A	11.0	B
Jefferson Ave at 27th St	Signalized	10.8	B	13.5	B	10.8	B	13.1	B	10.9	B	12.8	B	11.2	B	13.2	B	10.8	B	13.2	B	10.4	B	12.6	B
Jefferson Ave at 26th St	Signalized	9.8	A	10.5	B	10.5	B	10.8	B	11.0	B	11.1	B	8.6	A	9.1	A	10.7	B	12.4	B	10.5	B	12.6	B
Jefferson Ave at MLK JR At 25th St	Signalized	9.6	A	11.4	B	11.3	B	13.5	B	11.8	B	14.4	B	10.9	B	13.5	B	13.2	B	15.8	B	13.1	B	15.5	B
Huntington Ave at 35th St	Signalized	17.9	B	12.9	B	18.5	B	12.8	B	18.7	B	13.9	B	19.2	B	13.3	B	20.2	C	13.9	B	19.7	B	13.8	B
Huntington Ave at 34th St	Signalized	18.9	B	21.5	C	21.8	C	23.1	C	22.1	C	24.3	C	21.7	C	24.1	C	22.5	C	23.7	C	22.4	C	23.9	C
Huntington Ave at 28th St	Signalized	8.7	A	9.6	A	12.5	B	12.2	B	12.3	B	10.9	B	12.4	B	11.0	B	12.3	B	10.9	B	12.3	B	10.8	B
Huntington Ave at 26th St	Signalized	23.5	C	20.1	C	20.2	C	22.6	C	21.2	C	23.8	C	21.4	C	23.6	C	21.6	C	24.5	C	21.6	C	24.4	C
Huntington Ave at MLK JR At 25th St	Stop Control**	9.3	A	10.2	A	10.4	B	10.4	B	10.1	B	11.4	B	10.4	B	10.4	B	10.3	B	12.3	B	10.1	B	12.7	B
Terminal Ave at WB I-664 Off Ramp	Stop Control**	9.1	A	9.6	A	9.8	A	10.8	B	9.3	A	10.2	B	9.4	A	11.1	B	9.6	A	10.0	B	9.6	A	10.0	B
US 17 at Townpoint Rd	Stop Control**	164.0	F	85.0	F	831.5	F	595.4	F	830.9	F	552.2	F	671.3	F	432.8	F	870.0	F	517.9	F	912.2	F	552.1	F
Ramp to l-664 South On US 17	Yield Control***	11.2	B	11.7	B	18.5	C	21.3	C	17.4	C	20.2	C	16.6	C	19.2	C	9.2	C	8.1	C	17.8	C	21.0	C
I-664 SB Ramps at Pughsville Rd	Signalized	17.5	B	57.4	E	33.0	C	35.2	D	31.9	C	33.8	C	30.2	C	32.9	C	33.2	C	35.4	D	32.3	C	35.2	D
I-664 NB Off-Ramp at Pughsville Rd	Signalized	5.3	A	8.5	A	6.1	A	10.3	B	6.4	A	10.2	B	6.4	A	10.4	B	6.3	A	10.7	B	6.3	A	10.7	B

Intersection	Control Type	Existing				2040 No-Build				2040 Alternative A				2040 Alternative B				2040 Alternative C				2040 Alternative D			
		AM		PM																					
		Delay (s)	LOS	Delay (s)	LOS	Delay (s)	LOS																		
I-664 SB Ramps at Dock Landing Rd	Signalized	7.4	A	11.6	B	13.1	B	14.1	B	13.2	B	14.1	B	13.4	B	14.3	B	13.7	B	15.4	B	13.7	B	15.4	B
I-664 NB Ramps at Dock Landing Rd	Signalized	9.6	A	8.6	A	13.4	B	13.8	B	13.3	B	15.6	B	12.9	B	13.8	B	11.9	B	14.7	B	11.7	B	14.6	B
W Military Hwy (US 13/58)/Airline Blvd at US 460 Alt/Joliff Rd	Signalized	40.8	D	43.9	D	79.3	E	61.5	E	90.9	F	89.6	F	91.6	F	85.7	F	90.0	F	90.5	F	91.1	F	90.4	F
W Military Hwy (US 460) at US 58/I-664 EB Ramps	Stop Control**	15.2	B	10.8	B	135.6	F	19.3	C	95.1	F	36.1	E	264.3	F	38.5	E	27.6	D	23.3	C	25.5	D	22.9	C
S Military Hwy (US 460) at S Military Hwy (US 13/460)	Stop Control**	43.4	D	26.1	C	325.0	F	198.5	F	164.1	F	502.6	F	625.0	F	689.7	F	127.3	F	454.8	F	141.6	F	437.5	F
I-664 EB Off-Ramp/Schaefer Ave at S Military Hwy (US 460)	Stop Control**	83.3	F	357.3	F	636.6	F	1376.0	F	311.7	F	776.9	F	480.4	F	991.1	F	316.9	F	824.9	F	290.8	F	781.4	F
VA 164 Interchanges																									
VA 164 WB Off-Ramp at College Dr	Signalized	5.5	A	6.2	A	6.0	A	9.5	A	5.7	A	8.7	A	6.2	A	10.1	B	5.5	A	8.1	A	5.6	A	8.5	A
VA 164 EB On-Ramp at College Dr	Signalized	5.2	A	6.0	A	6.0	A	8.9	A	6.1	A	9.1	A	6.1	A	9.3	A	5.8	A	8.3	A	5.8	A	8.6	A
US 17 at College Dr	Signalized	26.3	C	62.5	E	54.3	D	151.5	F	72.5	E	182.5	F	64.9	E	172.8	F	68.0	E	181.6	F	68.4	E	179.8	F
VA 164 WB Ramps at Towne Point Rd*	Signalized	18.9	B	18.9	B	22.3	C	21.0	C	20.4	C	20.6	C	23.2	C	22.6	C	21.7	C	20.7	C	19.8	B	20.7	C
VA 164 EB Ramps at Towne Point Rd*	Signalized	19.6	B	30.6	C	25.5	C	63.8	E	25.1	C	64.0	E	34.9	C	69.1	E	19.7	B	56.0	E	20.3	C	61.2	E
VA 164 WB Ramps at Cedar Ln	Signalized	12.4	B	17.5	B	16.7	B	20.0	C	14.3	B	19.5	B	13.3	B	43.9	D	13.3	B	36.5	D	13.5	B	36.7	D
VA 164 EB Ramps at Cedar Ln	Signalized	11.2	B	5.6	A	17.2	B	6.5	A	17.2	B	6.5	A	39.8	D	6.9	A	42.2	D	5.2	A	49.8	D	5.3	A
VA 164 WB Ramps at Virginia International Gateway Blvd	Stop Control**	10.6	B	9.8	A	11.7	B	10.1	B	11.5	B	10.0	B	10.9	B	9.8	A	10.5	B	9.7	A	10.4	B	9.7	A
Virginia International Gateway Blvd at Wild Duck Ln	Stop Control**	11.7	B	10.5	B	16.1	C	11.4	B	16.0	C	11.1	B	15.4	C	11.1	B	11.7	B	10.9	B	11.6	B	10.8	B
VA 164 EB Ramps at Virginia International Gateway Blvd	Signalized	2.1	A	2.2	A	1.8	A	2.1	A	1.9	A	2.2	A	1.4	A	1.9	A	1.4	A	1.8	A	1.4	A	1.8	A
VA 164 WB Ramps at W Norfolk Rd	Stop Contro***	10.2	B	12.9	B	12.7	B	22.4	C	12.5	B	23.5	C	13.4	B	28.7	D	11.7	B	16.3	C	11.2	B	15.2	C
VA 164 EB Ramps at W Norfolk Rd	Stop Control**	10.7	B	12.4	B	11.9	B	16.6	C	13.3	B	18.1	C	18.6	C	45.4	E	12.0	B	14.5	B	11.5	B	13.3	B
RailRd Ave at Lee Ave*	Signalized	22.3	C	23.5	C	27.4	C	23.3	C	27.0	C	24.3	C	25.2	C	24.1	C	23.1	C	23.7	C	21.2	C	23.4	C
RailRd Ave at VA 164 EB Off-Ramp*	Signalized	98.8	F	12.9	B	47.5	D	14.6	B	48.5	D	13.0	B	68.8	E	14.9	B	49.4	D	14.6	B	50.1	D	14.7	B
RailRd Ave at US 58 NB/VA 164 WB Ramps	Signalized	17.5	B	17.0	B	18.5	B	18.0	B	18.2	B	16.2	B	18.2	B	16.1	B	17.2	B	16.2	B	17.2	B	16.4	B
Lee Ave at Woodrow St/Harper Ave	Signalized	6.0	A	5.1	A	6.1	A	5.9	A	6.1	A	5.8	A												

5.2 KEY STUDY AREA SEGMENT IMPACTS

To evaluate how the alternatives could improve traffic operations along the Study Area Corridors, VDOT and FHWA worked with the Cooperating and Participating Agencies to identify four "hot spots" along the Study Area Corridors that currently experience high levels of congestion. As these areas experience high levels of congestion now, it can be anticipated that they also would be the most highly congested areas along the Study Area Corridors in the future. The agencies identified data available from the travel demand model that could be used to compare the alternatives. These four sections are presented below along with summary tables and figures that show how different alternatives could improve operations in these hot spots. The four key study area segments are listed below, and shown in Figure 5-5

- Hampton Roads Bridge-Tunnel (HRBT) - Segments F, G and H
- I-564-Segment I
- I-664 - Monitor Merrimac Memorial Bridge-Tunnel (MMMBT) - Segments C, D and E
- I-664-Bowers Hill - Segment A

The impacts on these segments are discussed in Sections 5.2.1 through 5.2.4. The complete travel demand output from which the data for the above four segments was extracted is provided in Appendix K.

Figure 5-5: Forecast Segments

Hampton Roads Crossing Study SEIS

5.2.1 HRBT

Table 5-5 shows the travel demand model output for the section of I-64 between I-664 and I-564, which includes the HRBT bottleneck. Several performance measures are provided that indicate projected travel demand on the facility (daily vehicles miles traveled) and the level of congestion (travel time delay and daily vehicle hours traveled).
Table 5-5 indicates that under No-Build conditions, both VMT and VHT are projected to increase, along with significant increases in delay, in particular in the westbound direction. Compared to the No-Build alternative, delays are projected to decline under all alternatives, with the largest reductions projected under Alternative D. Additionally, the improvements in travel time and reductions in delay are illustrated in Figures 5-6 through 5-8.

Table 5-5: I-64 HRBT PM Peak Travel Time Comparison

Performance Measure		Existing (2015)	No-Build (2034)	Alternative A (2034)	Alternative B (2034)	Alternative C (2034)	Alternative D (2034)
PM Peak Travel Time (minutes)	EB	20	WB	25	45	32	31
Speed (congested speed MPH)	EB	36	WB	29	16	23	30
Delay (minutes)	EB	7	13	5	24	23	
	WB	12	33	19	41	38	49
Daily VHT		32,234	49,300	47,800	46,100	34,700	35,200
Daily VMT		$1,099,600$	$1,313,900$	$1,673,800$	$1,654,900$	$1,209,800$	$1,506,000$

Figure 5-6: I-64 HRBT PM Peak Traffic Travel Time Comparison

Figure 5-7: I-64 HRBT 2034 PM Peak Hour Travel Time for No-Build Conditions

Figure 5-8: 2034 PM Peak Hour Travel Time Savings along I-64 HRBT compared to No-Build Conditions
$\square A \square B \square C \square D$

5.2.2 I-564

Table 5-6 shows the travel demand model output for the section of I-564 and the Intermodal Connector between I64 and the proposed NIT/Navy interchange.
Table 5-6 indicates that under No-Build and Alternative A conditions, both VMT and VHT are projected to increase, compared to existing conditions, although delays are projected to remain minimal. However, with the construction of the I-564 Connector, VA 164 Connector and I-664 Connector under Alternatives B, C and D, VMT as well as VHT is projected to increase considerably, because I-564 will carry traffic that will cross the Elizabeth River. Along with these traffic volume increases, travel times are projected to increase, but because this section of $1-564$ comprises a relatively short segment, delay is not projected to increases more than two minutes under Alternative D. Additionally, changes in travel time and delay are illustrated in Figures 5-9 through 5-11.

Table 5-6: I-564 AM Peak Travel Time Comparison

Performance Measure		Existing (2015)	No-Build (2034)	Alternative A (2034)	Alternative B (2034)	Alternative C (2034)	Alternative D (2034)
AM Peak Travel Time (minutes)	EB	2	WB	2	3	3	6
5	5	5					
Speed (congested speed MPH)	EB	56	WB	47	50	60	26
Delay (minutes)	EB	0	0	0	30	32	
	WB	0.3	0	0	0	4	48
Daily VHT		1,024	1,200	1,200	2,900	5,800	5,400
Daily VMT		51,200	67,500	68,600	103,500	209,500	202,500

Figure 5-9: I-564 AM Peak Traffic Travel Time Comparison

Figure 5-10: I-564 2034 AM Peak Hour Travel Time for No-Build Conditions

Figure 5-11: 2034 AM Peak Hour Travel Time Savings along l-564 compared to No-Build Conditions

2034 Travel Time Savings (EB) 2034 Travel Time Savings (WB)

Note: Alternatives B, C, D include new location connections to VA 164 and/or I-664; the alternatives see in increase in travel time along l-564. There is no change in travel time under Alternative A

5.2.3 MMMBT

Table 5-7 shows the travel demand model output for the section of I-664 between I-64 and College Drive, which includes the MMMBT bottleneck.

Table 5-7 indicates that under No-Build conditions, both VMT and VHT are projected to increase, along with significant increases in delay, in particular in the eastbound direction. Compared to the No-Build alternative, delays are projected to decline under all alternatives, with the largest reductions projected under Alternatives C and D. Additionally, improvements in travel time and reductions in delay are illustrated in Figures 5-12 through 5-14.

Table 5-7: I-664 MMMBT PM Peak Travel Time Comparison

Performance Measure		Existing (2015)	No-Build (2034)	Alternative A (2034)	Alternative B (2034)	Alternative C (2034)	Alternative D (2034)
PM Peak Travel Time (minutes)	EB	12	21	18	17	12	12
	WB	19	22	17	17	13	12
Speed (congested speed MPH)	EB	58	33	39	41	55	56
	WB	37	31	41	40	52	56
Delay (minutes)	EB	0	10	6	5	1	1
	WB	7	11	5	6	2	1
Daily VHT		18,551	26,100	21,300	20,900	26,300	23,400
Daily VMT		838,200	1,087,800	1,018,300	1,006,900	1,475,500	1,352,800

Figure 5-12: I-664 MMMBT PM Peak Traffic Travel Time Comparison

Figure 5-13: I-664 MMMBT 2034 PM Peak Hour Travel Time for No-Build Conditions

Figure 5-14: 2034 PM Peak Hour Travel Time Savings along I-664 MMMBT compared to No-Build Conditions

5.2.4 I-664 Bowers Hill

Table 5-8 shows the travel demand model output for the section of I-664 between VA 164 and I-264, which includes the Bowers Hill bottleneck.
Table 5-8 indicates that under No-Build conditions, both VMT and VHT are projected to increase, along with a minor increase in delay in the westbound direction. Compared to the No-Build alternative, delays are projected to decline
under Alternatives C and D in the eastbound direction, and under Alternatives B, C and D in the westbound direction. In fact, under Alternatives C and D, delays are projected to be minimal with speeds at or near free-flow conditions during the PM peak period. Additionally, improvements in travel time and reductions in delay are illustrated in Figures 5-15 through 5-17.

Table 5-8: I-664 Bowers Hill PM Peak Travel Time Comparison

Performance Measure		Existing (2015)	No-Build (2034)	Alternative A (2034)	Alternative B (2034)	Alternative C (2034)	Alternative D (2034)
PM Peak Travel Time (minutes)	EB	8	WB	8	10	8	8
7	Speed (congested speed MPH)	EB	50	54	56	52	59
Delay (minutes)	EB	51	43	44	46	57	59
	WB	1	3	3	2	0	7
Daily VHT		12,330	13,300	12,400	12,500	13,500	12,800
Daily VMT		622,030	706,300	678,300	683,300	825,600	796,500

Figure 5-15: I-664 Bowers Hill PM Peak Traffic Travel Time Comparison

Figure 5-16: I-664 Bowers Hill 2034 PM Peak Hour Travel Time by Direction (No-Build)

Figure 5-17: 2034 PM Peak Hour Travel Time Savings along I-664 Bowers Hill Compared to No-Build Conditions

5.2.5 Distribution of Naval Station Norfolk Trips

A major traffic generator within Norfolk is the Naval Station Norfolk, for which l-564 is the primary access route Construction of additional Elizabeth River crossings could provide alternate access routes and provide relief to existing, over-saturated facilities. Table 5-9 below indicates the percentage of trips that would be expected to use the HRBT, MMMBT, l-564, I-564C, I-664C and VA 164C under each of the alternatives.

Table 5-9: Distribution of Naval Station Norfolk Trips						
No-Build Alternative A Alternative B Alternative C Alternative D I-64 (HRBT) 8% 10% 9% 2% 3% I-664 (MMMBT) 0.1% 0.1% 1% 8% 8% I-564 (Segment I) 35% 35% 31% 23% 25% I-564 C (Segment J) 14% 25% 25% I-664C (Segment K) 17% 17% VA 164C (Segment L) 14% 8% 8%						

Additional information on the distribution of trips related to the Naval base and various port facilities is provided in Appendix L. Appendix M contains material prepared by the HRTPO depicting the source of trips using the Hampton Roads crossings under each alternative.
5.3 2040 NO-BUILD ALTERNATIVE

As described in Section 1.1.2.1, the No-Build Alternative does not assume any improvements or capacity enhancements along any of the Study Area Corridors. All projects that are contained in the region's Long Range Transportation Plan are assumed to be in place. In consultation with VDOT, the following roadway network modification were made as part of the 2040 No-Build forecast:

- Eliminated the US 460/US 58/US 13 Connector project;
- Removed tolls from all existing and proposed river crossings except for the Midtown Tunnel (US 58) and the Downtown Tunnel (I-264);and,
- Added third General Purpose lane to I-64 between I-264 (Bowers Hill interchange) and I-464, and one HOV lane in each direction. The HOV lane ties into the existing HOV system east of I-464, and has the same peak hour occupancy restrictions as the existing system
These roadway network modifications were retained for all 2040 modeling scenarios.
The 2040 No-Build forecast shows continuing growth in regional traffic volumes throughout the region. Daily traffic volumes on the HRBT are projected to increase 23 percent compared to 2015 volumes (from 91,000 to 112,200 vehicles per day), while daily traffic volumes on the MMMBT and VA 164 are projected to grow by 31 and 34 percent, respectively (from 69,300 to 90,700 and 49,000 to 65,600 vehicles per day, respectively).

Detailed daily volumes for 2040 No-Build conditions, including daily turning movement volumes at the ramp terminal intersections, are provided in Appendix A in Figures A.1-1 through A.1-15

Along with the daily volumes, AM and PM peak hour volumes increase correspondingly on the Study Area Corridor roadways. A summary of the 2040 No-Build mainline peak hour volumes is provided in Figure 5-2. Detailed AM and PM peak hour volumes for the 2040 No-Build Alternative, including turning movement volumes at the ramp terminal intersections, are provided in Appendix A in Figures A.2-1 through A.2-15.

It should be noted that these estimates were developed from planning-level capacity analysis output and are intended only to indicate relative changes in travel time between alternatives. Additional and/or different segments could be reported in the Final SEIS depending on the Preferred Alternative.

Table 5-11: 2040 No-Build Estimated End-to-End Travel Time by Study Area Corridor

Segment	Direction	AM Peak Travel Time (minutes/vehicle)	
		Existing	2040 NB
I-64	Eastbound	18.3	20.2
	Westbound	17.3	20.3
I-664 (I-64 to VA 164)	Eastbound	15.1	15.0
	Westbound	16.3	19.5
I-664 (VA 164 to I-264)	Eastbound	7.7	7.9
	Westbound	7.9	8.1
VA 164	Eastbound	6.4	6.5
	Westbound	6.1	6.1
I-564; I-664 and I-564 Connectors	Eastbound	-	-
	Westbound	-	-
I-564; l-564 and VA 164 Connectors	Eastbound	-	-
	Westbound	-	-
Segment	Direction	PM Peak Travel Time (minutes/vehicle)	
		Existing	2040 NB
I-64	Eastbound	17.7	20.7
	Westbound	16.6	19.0
I-664 (I-64 to VA 164)	Eastbound	17.7	20.6
	Westbound	14.6	14.8
I-664 (VA 164 to I-264)	Eastbound	7.7	7.9
	Westbound	7.8	7.9
VA 164	Eastbound	6.4	6.4
	Westbound	6.1	6.2
I-564; I-664 and I-564 Connectors	Eastbound	-	-
	Westbound	-	-
I-564; l-564 and VA 164 Connectors	Eastbound	-	-
	Westbound	-	-

Note: VA 164C, l-564C, and l-664C do not exist under this alternative. The same table is being presented for all alternatives for comparison purposes. Estimates are based on HCS Facilities analysis results.
5.42040 ALTERNATIVE A

As described in Section 1.1.2.2, Alternative A involves widening $I-64$ to three lanes in each direction from South Mallory Street to the I-64/l-564 interchange and construction of a new bridge-tunnel on the HRBT. The new lanes were coded into the HRTPO travel demand model, and the raw model output was processed as described in Section 2.4. The resulting daily traffic volumes on the key roadways are summarized in Table 5-1.

The 2040 Alternative A traffic forecast shows that the widening of I-64 between South Mallory Street and I-564 would result in a considerable shift of traffic volumes to the HRBT, along with a slight decrease in daily volume on
the MMMBT compared to No-Build conditions. Projected daily traffic volumes on the HRBT would increase 23 percent compared to 2040 No-Build volumes (from 112,200 to 137,700 vehicles per day). Volumes would decrease approximately two percent both on the MMMBT and on VA 164 (from 90,700 to 89,200 and from 65,600 to 64,000 vehicles per day, respectively), but would be greater than 2015 volumes.
Detailed daily volumes for 2040 Alternative A conditions, including daily turning movement volumes at the ramp terminal intersections, are provided in Appendix B in Figures B.1-1 through B.1-15.
Detailed AM and PM peak hour volumes for Alternative A conditions, including turning movement volumes at the ramp terminal intersections, are provided in Appendix B in Figures B.2-1 through B.2-15.
Table 5-4 presents the intersection LOS for all ramp terminal intersections.

Detailed LOS exhibits for Alternative A are provided in Appendix B in Figures B.3-1 through B.3-15

5.4.1 Operational Analysis

Capacity analyses of the 2040 Alternative A peak hour volumes, provided in Figure 5-3, show that operations along I64 west of the HRBT are generally projected to be worse than 2040 No-Build conditions, with some segments approaching capacity (LOS E). East of the HRBT, where additional capacity would be provided by widening the existing four-lane section to six lanes, operations are generally projected to improve compared to No-Build conditions, from LOS E and LOS F to LOS D or better, except east of the ramp to l-564/Granby Street.

Along l-664 and VA 164, where no capacity would be added, operations are generally projected to be comparable to 2040 No-Build conditions.

Along l-564, acceptable operating conditions of LOS D or better are projected in the non-peak directions (eastbound during the AM peak hour, westbound during the PM peak hour). During the PM peak hour, LOS F operating conditions are projected between the Terminal Boulevard on-ramp and the I-64/I-564 interchange, similar to the 2040 No-Build conditions.

Table 5-12 summarizes the Alternative A LOS by Study Area Corridor.

Table 5-12: 2040 Alternative A Projected LOS at Key Roadway Segments

Roadway Segment	AM Peak					
	Eastbound			Westbound		
	Existing	2040 NB	2040 Alt A	Existing	2040 NB	2040 Alt A
HRBT	F	F	F	F	F	F
MMMBT	C	C	C	F	F	F
VA 164	C	D	D	B	C	C
VA 164C	-	-	-	-	-	-
I-564C	-	-	-	-	-	-
I-664C	-	-	-	-	-	-
Roadway Segment	PM Peak					
	Eastbound			Westbound		
	Existing	2040 NB	2040 Alt A	Existing	2040 NB	2040 Alt A
HRBT	F	F	F	F	F	F
MMMBT	F	F	F	C	F	F
VA 164	C	C	C	C	D	D
VA 164C	-	-	-	-	-	-
I-564C	-	-	-	-	-	-
I-664C	-	-	-	-	-	-

Note: VA
5.4.2 Travel Time

Compared to 2040 No-Build conditions, end-to-end travel times along l-64 are projected to improve under Alternative A. The travel times along I-664 and VA 164 would be approximately the same under No-Build conditions and Alternative A conditions, with some slight improvements to the westbound I-664 travel time north of VA 164 during the AM peak and eastbound during the PM peak. Table 5-13 summarizes the average travel times in minutes per vehicle by Study Area Corridor for Alternative A

It should be noted that these estimates were developed from planning-level capacity analysis output and are intended only to indicate relative changes in travel time between alternatives. Additional and/or different segments could be reported in the Final SEIS depending on the Preferred Alternative.

The new lanes were coded into the HRTPO travel demand model; and, the raw model output was processed as described in Section 2.4. The resulting daily traffic volumes on the key roadways are summarized in Table 5-1.
As shown in Table 5-1, compared to 2040 No-Build conditions, the capacity expansions under Alternative B would result in an increase in daily traffic volume on the HRBT, and a decrease in traffic on the MMMBT. Projected daily traffic volumes on the HRBT would increase 19 percent compared to 2040 No-Build volumes (to 133,400). Volumes on the MMMBT would decrease eight percent (to 83,100) and increase 20 percent on VA 164 (to 78,400)
The increase in traffic on the HRBT is smaller than that under Alternative A; likewise, the decrease in traffic on the MMMBT is larger than under Alternative A. Traffic volumes on VA 164 would increase substantially compared to Alternative A, due to the additional capacity provided in the Study Area Corridor
There is substantial traffic demand on the I-564 and VA 164 Connectors, indicating that this new connection serves a need for improved connectivity between the southwestern Hampton Roads region and the Naval and port facilities in the Norfolk area.
Detailed daily volumes for Alternative B conditions, including daily turning movement volumes at the ramp terminal intersections, are provided in Appendix C in Figures C.1-1 through C.1-15.
Detailed AM and PM peak hour volumes for Alternative B conditions, including turning movement volumes at the ramp terminal intersections, are provided in Appendix C in Figures C.2-1 through C.2-16

Table 5-4 presents the intersection LOS for all ramp terminal intersections.
Detailed LOS exhibits are provided in Appendix C in Figures C.3-1 through C.3-16.
5.5.1 Operational Analysis

Capacity analyses of the 2040 Alternative B peak hour volumes, provided in Figure 5-3, show that operations along I64 would improve slightly compared to No-Build and Alternative A conditions, with fewer segments approaching or exceeding capacity (LOS E or LOS F), but the HRBT and some other segments east of the ramp to l-564/Granby Stree would continue to operate at LOS F. The HRBT is projected to operate at LOS D in the westbound direction during the PM peak only, but LOS F in the westbound direction during the AM peak hour and in the eastbound direction during both the AM and the PM peak hour

Along l-664, where no capacity would be added, operations are generally projected to be comparable to 2040 No Build conditions and Alternative A conditions.
Along VA 164 where capacity is added, operations are generally projected to be comparable to existing condition and LOS D or better, with the exception of westbound VA 164 during the PM peak hour, where four segments between the West Norfolk Road interchange and the Cedar Lane interchange would be approaching capacity (LOS E).

Along l-564, acceptable operating conditions of LOS D or better are projected in the non-peak directions (eastbound during the AM peak hour, westbound during the PM peak hour). During the PM peak hour, LOS F operating conditions are projected between the Terminal Boulevard on-ramp and the I-64/I-564 interchange.

Table 5-14 summarizes the Alternative B LOS by Study Area Corridor.

This alternative also assumes completion of the interchange (currently under construction) at I-564 and the Norfolk International Terminal (NIT) and Naval Station Norfolk. Under the Alternative B forecast, this interchange would not only provide access to the Port and Navy facilities but also to other destinations along Hampton Boulevard. The Alternative B forecast does not assume that traffic using this interchange is restricted to Port or Navy traffic only and assumes full access to and from areas to the west. However, as the study advances and stakeholder input is received, it may be necessary to consider access limitations on this interchange. Forecasts would be revised accordingly.

Table 5-14: 2040 Alternative B Projected LOS at Key Roadway Segments

Roadway Segment	AM Peak					
	Eastbound			Westbound		
	Existing	2040 NB	2040 Alt B	Existing	2040 NB	2040 Alt B
HRBT	F	F	F	F	F	F
MMMBT	C	C	C	F	F	F
VA 164	C	D	C	B	C	B
VA 164C	-	-	C	-	-	B
I-564C	-	-	C	-	-	B
I-664C	-	-	-	-	-	-
Roadway Segment	PM Peak					
	Eastbound			Westbound		
	Existing	2040 NB	2040 Alt B	Existing	2040 NB	2040 Alt B
HRBT	F	F	F	F	F	D
MMMBT	F	F	F	C	F	F
VA 164	C	C	C	C	D	C
VA 164C	-	-	B	-	-	C
I-564C	-	-	B	-	-	C
I-664C	-	-	-	-	-	-

Note: $1-664 \mathrm{C}$ does not exist under this alternative. The same table is being presented for all alternatives for comparison purposes.
5.5.2 Travel Time

Compared to 2040 No-Build conditions, end-to-end travel times along I-64 and I-664 are projected to improve under Alternative B. The reduction in travel times for $\mathrm{I}-64$ would be greater under Alternative B than under Alternative A, particularly in the westbound direction during the PM peak hour. The travel times along I-664, both north and south of VA 164 would be approximately the same under No-Build conditions and Alternative B conditions. The travel times along VA 164 would be approximately the same under No-Build conditions and Alternative B conditions. Table 5-15 summarizes the average travel times in minutes per vehicle by Study Area Corridor for Alternative B.

It should be noted that these estimates were developed from planning-level capacity analysis output and are intended only to indicate relative changes in travel time between alternatives. Additional and/or different segments could be reported in the Final SEIS depending on the Preferred Alternative.

Table 5-15: 2040 Alternative B Estimated End-to-End Travel Time by Study Area Corridor

Segment	Direction	AM Peak Travel Time (minutes/vehicle)		
		Existing	2040 NB	2040 Alt B
I-64	Eastbound	18.3	20.2	18.6
	Westbound	17.3	20.3	17.2
I-664 (I-64 to VA 164)	Eastbound	15.1	15.0	14.9
	Westbound	16.3	19.5	18.8
I-664 (VA 164 to I-264)	Eastbound	7.7	7.9	7.8
	Westbound	7.9	8.1	8.1
VA 164	Eastbound	6.4	6.5	6.4
	Westbound	6.1	6.1	6.1
I-564; I-664 and I-564 Connectors	Eastbound	-	-	-
	Westbound	-	-	-
I-564; I-564 and VA 164 Connectors	Eastbound	-	-	10.5
	Westbound	-	-	10.2
Segment	Direction	PM Peak Travel Time (minutes/vehicle)		
		Existing	2040 NB	2040 Alt B
1-64	Eastbound	17.7	20.7	18.3
	Westbound	16.6	19.0	14.6
I-664 (I-64 to VA 164)	Eastbound	17.7	20.6	19.6
	Westbound	14.6	14.8	14.7
I-664 (VA 164 to I-264)	Eastbound	7.7	7.9	7.8
	Westbound	7.8	7.9	7.9
VA 164	Eastbound	6.4	6.4	6.3
	Westbound	6.1	6.2	6.2
I-564; I-664 and I-564 Connectors	Eastbound	-	-	-
	Westbound	-	-	-
I-564; I-564 and VA 164 Connectors	Eastbound	-	-	11.0
	Westbound	-	-	9.9

Note: $1-664 \mathrm{C}$ does not exist under this alternative. The same table is being presented for all alternatives for comparison purposes. Estimates are based on HCS Facilities analysis results.
5.62040 ALTERNATIVE C

As described in Section 1.1.2.4, Alternative C involves widening I-664 to four lanes in each direction from the I-64 interchange to the VA 164 interchange and construction of a new bridge-tunnel on the MMMBT; widening I-664 to three lanes in each direction from the VA 164 interchange to the I-64/I-264 interchange; and construction of the I$564, \mathrm{I}-664$ and VA 164 connectors. Although this alternative also includes transit-only lanes along the I-564 and I-664 connectors, as well as I-664 north of the MMMBT, for traffic forecasting and analysis purposes, these transit-only lanes were not considered, because the November 2015 DRPT assessment of future transit ridership indicated minimal impact on the number of vehicle trips within the study area.
This alternative also assumes completion of the interchange (currently under construction) at I-564 and the Norfolk International Terminal (NIT) and Naval Station Norfolk. Under the Alternative C forecast, this interchange would not only provide access to the Port and Navy facilities but also to other destinations along Hampton Boulevard. The Alternative C forecast does not assume that traffic using this interchange is restricted to Port or Navy traffic only and
assumes full access to and from areas to the west. However, as the study advances and stakeholder input is received, it may be necessary to consider access limitations on this interchange. Forecasts would be revised accordingly.
The new lanes were coded into the HRTPO travel demand model; and, the raw model output was processed as described in Section 2.4. The resulting daily traffic volumes on the key roadways are summarized in Table 5-1.
As shown in Table 5-1, the capacity expansions under Alternative C would result in an opposite shift in traffic patterns compared to the traffic pattern changes in Alternatives A and B. With the added capacity on the MMMBT, compared to 2040 No-Build conditions, daily traffic volumes are projected to decrease eight percent on the HRBT (to 103,600) and increase 41 percent on the MMMBT (to 127,700). Traffic volumes on VA 164 are projected to decrease approximately 18 percent compared to No-Build conditions. Projected traffic volumes on VA 164 are lower than the increases under Alternatives A and B, with the $I-664$ Connector absorbing some of the traffic volume instead.

Detailed daily volumes for Alternative C conditions, including daily turning movement volumes at the ramp terminal intersections, are provided in Appendix D in Figures D.1-1 through D.1-16.
Detailed AM and PM peak hour volumes for Alternative C conditions, including turning movement volumes at the ramp terminal intersections, are provided in Appendix \mathbf{D} in Figures D.2-1 through D.2-16.
Table 5-4 presents the intersection LOS for all ramp terminal intersections.

Detailed LOS exhibits are provided in Appendix D in Figures D.3-1 through D.3-16

5.6.1 Operational Analysis

Capacity analyses of the 2040 Alternative C peak hour volumes show that operations along I-64 would be worse than those under Alternative A and B, but generally slightly better than under 2040 No-Build conditions, with five fewer segments during each peak hour in which volume exceeds capacity (LOS F).
The additional capacity along l-664 is generally expected to result in acceptable operating conditions of LOS D or better along the I-664 Study Area Corridor, including the MMMBT. However, without additional improvements, increased peak hour volumes are projected to result in LOS F operations along westbound I-664 during the PM peak hour, approaching I-64. The section of I-664 through the Bowers Hill interchange would continue to operate at LOS E or LOS F in both directions during both the AM and the PM peak hour

Traffic operations along VA 164 would be acceptable; even without widening of this Study Area Corridor, the shift in volume to the I-664 Connector would result in LOS D or better along VA 164
Along I-564, acceptable operating conditions of LOS D or better are projected in the non-peak directions (eastbound during the AM peak hour, westbound during the PM peak hour). Under Alternative C, westbound I-564 would operate at LOS F through the I-64/I-564 interchange during the AM peak hour, compared to LOS D under 2040 NoBuild conditions. During the PM peak hour, LOS F operations are projected between the Intermodal Connector onramp and the I-64/I-564 interchange.

Table 5-16 summarizes the Alternative C LOS by Study Area Corridor

Table 5-16: 2040 Alternative C Projected LOS at Key Roadway Segments

Roadway Segment	AM Peak					
	Eastbound			Westbound		
	Existing	2040 NB	2040 Alt C	Existing	2040 NB	2040 Alt C
HRBT	F	F	F	F	F	F
MMMBT	C	C	A	F	F	B
VA 164	C	D	C	B	C	B
VA 164C	-	-	A	-	-	A
I-564C	-	-	C	-	-	C
I-664C	-	-	C	-	-	C
Roadway Segment	PM Peak					
	Eastbound			Westbound		
	Existing	2040 NB	2040 Alt C	Existing	2040 NB	2040 Alt C
HRBT	F	F	F	F	F	F
MMMBT	F	F	B	C	F	A
VA 164	C	C	C	C	D	C
VA 164C	-	-	A	-	-	A
I-564C	-	-	C	-	-	D
I-664C	-	-	C	-	-	C

5.6.2 Travel Time

Compared to 2040 No-Build conditions, end-to-end travel times along I-64 and I-664 are generally projected to improve under Alternative C. The reduction in travel times for $1-64$ would be less under Alternative C than under Alternative A or B, and remain greater than existing conditions. Travel time along I-664 from VA 164 to I-664, in the westbound direction, would be greater under Alternative C compared to 2040 No-Build conditions, due to the shift in traffic volumes from the HRBT to the I-664 Connector and MMMBT. The eastbound travel times during both peaks and the westbound travel time in the AM peak along I-664 would be reduced by Alternative C improvements. The travel times along VA 164 would be approximately the same under No-Build conditions and Alternative C conditions. The end-to-end travel times along l-564, the l-564 Connector, and VA 164 connector would be similar between Alternative B and Alternative C. Table 5-17 summarizes the average travel times in minutes per vehicle by Study Area Corridor for Alternative C

It should be noted that these estimates were developed from planning-level capacity analysis output and are intended only to indicate relative changes in travel time between alternatives. Additional and/or different segments could be reported in the Final SEIS depending on the Preferred Alternative.
received, it may be necessary to consider access limitations on this interchange. Forecasts would be revised accordingly.
The new lanes were coded into the HRTPO travel demand model; and, the raw model output was processed as described in Section 2.4. The resulting daily traffic volumes on the key roadways are summarized in Table 5-1.
As shown in Table 5-1, the capacity expansions under Alternative D would result in the highest combined volumes on the HRBT and MMMBT. Daily traffic volumes are projected to increase 11 percent on the HRBT and 27 percent on the MMMBT compared to 2040 No-Build conditions, to 124,200 and 114,900, respectively. Traffic volumes on VA 164 are projected to decrease approximately 14 percent compared to No-Build conditions, less than the decrease under Alternative C , but increase approximately 14 percent compared to existing conditions. The projected increase along VA 164 is lower than the increases under Alternatives A and B and 2040 No-Build Conditions, with the l-664 Connector absorbing some of this traffic volume increase, despite the additional capacity provided on VA 164 under Alternative D.

Detailed daily volumes for Alternative D conditions, including daily turning movement volumes at the ramp terminal intersections, are provided in Appendix E in Figures E.1-1 through E.1-16.

Detailed AM and PM peak hour volumes for Alternative D conditions, including turning movement volumes at the ramp terminal intersections, are provided in Appendix E in Figures E.2-1 through E.2-16
Table 5-4 presents the intersection LOS for all ramp terminal intersections
Detailed LOS exhibits are provided in Appendix E in Figures E.3-1 through E.3-16.
5.7.1 Operational Analysis

Capacity analyses of the 2040 Alternative D peak hour volumes, provided in Figure 5-3, show that operations along 1 64 are generally projected to be acceptable (LOS D or better), except east of the ramp to I-564/Granby Street Volumes on the HRBT would approach capacity (LOS E) under this alternative in all but the westbound PM peak hour, when acceptable LOS D operations are projected. However, Alternative D is the only alternative that does not project LOS F operations on the HRBT. Similar to 2040 No-Build conditions, LOS F operations are projected between the I-664 interchange and LaSalle Avenue during the AM peak hour in both directions.

Operating conditions along l-664 under Alternative D would be comparable to Alternative C and improved compared to No-Build conditions. The additional capacity along I-664 generally would result in acceptable operating conditions throughout this Study Area Corridor, including the MMMBT. However, without additional improvements, increased peak hour volumes are projected to result in LOS F operations along westbound I-664 during the PM peak hour approaching I-64. The section of I-664 through the Bowers Hill interchange would continue to operate at LOS E or F in both directions during both the AM and the PM peak hour
Traffic operations along VA 164 are projected to be acceptable; the shift in volume to the I-664 Connector would result in LOS D or better along VA 164.
Along I-564, acceptable operating conditions of LOS D or better are projected in the non-peak directions (eastbound during AM peak, westbound during PM peak). Under Alternative D, westbound I-564 would operate at LOS F through the I-64/I-564 interchange during the AM peak hour, compared to LOS D under 2040 No-Build conditions. During the PM peak hour, failing LOS is projected between the Intermodal Connector on-ramp and the I-64/I-564 interchange.
Table 5-18 summarizes the Alternative D LOS by Study Area Corridor

Table 5-18: 2040 Alternative D Projected LOS at Key Roadway Segments

Roadway Segment	AM Peak					
	Eastbound			Westbound		
	Existing	2040 NB	2040 Alt D	Existing	2040 NB	2040 Alt D
HRBT	F	F	E	F	F	E
MMMBT	C	C	A	F	F	B
VA 164	C	D	B	B	C	B
VA 164C	-	-	A	-	-	A
I-564C	-	-	C	-	-	C
I-664C	-	-	C	-	-	B
Roadway Segment	PM Peak					
	Eastbound			Westbound		
	Existing	2040 NB	2040 Alt D	Existing	2040 NB	2040 Alt D
HRBT	F	F	E	F	F	D
MMMBT	F	F	B	C	F	A
VA 164	C	C	B	C	D	B
VA 164C	-	-	A	-	-	A
I-564C	-	-	C	-	-	C
I-664C	-	-	C	-	-	C

5.7.2 Travel Time

Compared to 2040 No-Build conditions, end-to-end travel times along I-64 and I-664 are projected to improve the most under Alternative D . The reduction in travel times for $\mathrm{I}-64$ would be greatest under Alternative D and travel times are projected to be less than the existing conditions. Travel time along I-664 from VA 164 to I-664, in the westbound direction, would be greater under Alternative D compared to 2040 No-Build conditions, but less than the travel time under Alternative C conditions. Travel times along I-664 in the westbound direction during the AM peak and the eastbound direction during the PM peak are projected to be similar under Alternative C and Alternative D and less than the travel times under 2040 No-Build conditions. The travel times along VA 164 would be approximately the same under No-Build conditions and Alternative D conditions. The end-to-end travel times along I-564, the I-564 Connector, and VA 164 connector would be similar between Alternative B, Alternative C, and Alternative D. The travel times along I-564, the I-564 Connector, and the I-664 Connector would be similar between Alternative C and Alternative D. Table 5-19 summarizes the average travel times in minutes per vehicle by Study Area Corridor for Alternative D.
It should be noted that these estimates were developed from planning-level capacity analysis output and are intended only to indicate relative changes in travel time between alternatives. Additional and/or different segments could be reported in the Final SEIS depending on the Preferred Alternative.

Table 5-19: 2040 Alternative D Estimated End-to-End Travel Time by Study Area Corridor

Segment	Direction	AM Peak Travel Time (minutes/vehicle)		
		Existing	2040 NB	2040 Alt D
1-64	Eastbound	18.3	20.2	17.1
	Westbound	17.3	20.3	15.9
I-664 (I-64 to VA 164)	Eastbound	15.1	15.0	13.8
	Westbound	16.3	19.5	14.4
I-664 (VA 164 to I-264)	Eastbound	7.7	7.9	7.6
	Westbound	7.9	8.1	7.8
VA 164	Eastbound	6.4	6.5	6.4
	Westbound	6.1	6.1	6.1
I-564; I-664 and I-564 Connectors	Eastbound	-	-	7.9
	Westbound	-	-	8.5
l-564; I-564 and VA 164 Connectors	Eastbound	-	-	10.3
	Westbound	-	-	9.8
Segment	Direction	PM Peak Travel Time (minutes/vehicle)		
		Existing	2040 NB	2040 Alt D
1-64	Eastbound	17.7	20.7	17.0
	Westbound	16.6	19.0	14.5
I-664 (I-64 to VA 164)	Eastbound	17.7	20.6	13.8
	Westbound	14.6	14.8	15.5
I-664 (VA 164 to I-264)	Eastbound	7.7	7.9	7.6
	Westbound	7.8	7.9	7.8
VA 164	Eastbound	6.4	6.4	6.3
	Westbound	6.1	6.2	6.2
I-564; I-664 and I-564 Connectors	Eastbound	-	-	9.3
	Westbound	-	-	8.1
I-564; I-564 and VA 164 Connectors	Eastbound	-	-	11.7
	Westbound	-	-	9.4

Estimates are based on HCS Facilities analysis results.
6. OPENING YEAR 2028 FORECASTS AND ANALYSES

6.1 SUMMARY

A summary of daily traffic volumes on key roadway links within the study area is provided in Table 6-1. A comparison of daily traffic volumes on the HRBT and MMMBT for 2015 and 2028 conditions is provided in Figure 61.

Roadway Segment	$\mathbf{2 0 1 5}$	$\mathbf{2 0 2 8 ~ N o -}$ Build	$\mathbf{2 0 2 8}$ Alt A	2028 Alt B	$\mathbf{2 0 2 8}$ Alt C	2028 Alt D
HRBT	91,000	102,600	119,100	114,900	91,900	106,500
MMMBT, north of I-664C	69,300	81,200	79,600	74,000	108,400	97,400
MMMBT, south of I-664C	69,300	81,200	79,600	74,000	105,200	103,800
VA 164*	49,000	59,400	57,700	68,700	49,300	49,700
VA 164C	-	-	-	43,800	24,800	26,200
I-564C	-	-	-	43,800	75,000	72,600
I-664C	-	-	-	-	58,600	54,600

Figure 6-1: 2028 Projected Daily Traffic Volumes at the HRBT and MMMBT

Figure 6-2 shows the mainline volume for each roadway segment along the Study Area Corridors for the Existing, 2028 No-Build, and 2028 Build Alternatives.
Figure 6-3 presents a summary of the projected mainline LOS. This summary is provided in the same format as the volume exhibit in Figure 6-2, and shows the projected mainline LOS as well as the projected LOS for each merge, diverge, and weaving area along all Study Area Corridors for each alternative. Mainline average travel speeds are presented in Figure 6-4.

Table 6-2 presents the intersection LOS for all ramp terminal intersections for the Existing, 2028 No-Build, and 2028 Build Alternatives.
Detailed daily volumes for 2028 No-Build conditions, including daily turning movement volumes at the ramp terminal intersections, are provided in Appendix F in Figures F.1-1 through F.1-15.
Detailed AM and PM peak hour volumes for 2028 No-Build conditions, including turning movement volumes at the ramp terminal intersections, are provided in Appendix F in Figures F.2-1 through F.2-15.

Detailed LOS exhibits for the 2028 No-Build Alternative are provided in Appendix F in Figures F.3-1 through F.3-15.
Detailed daily volumes for 2028 Alternative A conditions, including daily turning movement volumes at the ramp terminal intersections, are provided in Appendix G in Figures G.1-1 through G.1-15.
Detailed AM and PM peak hour volumes for 2028 Alternative A conditions, including turning movement volumes at the ramp terminal intersections, are provided in Appendix G in Figures G.2-1 through G.2-15.
Detailed LOS exhibits for 2028 Alternative A are provided in Appendix G in Figures G.3-1 through G.3-15
Detailed daily volumes for 2028 Alternative B conditions, including daily turning movement volumes at the ramp terminal intersections, are provided in Appendix H in Figures H.1-1 through H.1-16.

Detailed AM and PM peak hour volumes for 2028 Alternative B conditions, including turning movement volumes at the ramp terminal intersections, are provided in Appendix \mathbf{H} in Figures $\mathbf{H} .2-1$ through H.2-16.
Detailed LOS exhibits for 2028 Alternative B are provided in Appendix H in Figures H.3-1 through H.3-16
Detailed daily volumes for 2028 Alternative C conditions, including daily turning movement volumes at the ramp terminal intersections, are provided in Appendix I in Figures I.1-1 through I.1-16

Detailed AM and PM peak hour volumes for 2028 Alternative C conditions, including turning movement volumes at the ramp terminal intersections, are provided in Appendix I in Figures I.2-1 through I.2-16

Detailed LOS exhibits for 2028 Alternative C are provided in Appendix I in Figures I.3-1 through I.3-16.
Detailed daily volumes for 2028 Alternative D conditions, including daily turning movement volumes at the ramp terminal intersections, are provided in Appendix J in Figures J.1-1 through J.1-16.

Detailed AM and PM peak hour volumes for 2028 Alternative D conditions, including turning movement volumes at the ramp terminal intersections, are provided in Appendix J in Figures J.2-1 through J.2-16

Detailed LOS exhibits for 2028 Alternative D are provided in Appendix J in Figures J.3-1 through J.3-16

Table 6-2: 2028 Intersection Capacity Analysis Results

Intersection	Control Type	Existing				2028 No-Build				2028 Alternative A				2028 Alternative B				2028 Alternative C				2028 Alternative D			
		AM		PM																					
		Delay (s)	LOS																						
I-664 SB Ramps at Dock Landing Rd	Signalized	7.4	A	11.6	B	11.8	B	13.6	B	11.7	B	13.2	B	12.0	B	13.3	B	13.0	B	13.9	B	12.9	B	13.9	B
I-664 NB Ramps at Dock Landing Rd	Signalized	9.6	A	8.6	A	12.1	B	13.9	B	12.2	B	15.0	B	12.3	B	14.0	B	11.0	B	14.3	B	11.0	B	14.3	B
W Military Hwy (US 13/58)/Airline Blvd at US $460 \mathrm{Alt} / \mathrm{Joliff}$ Rd	Signalized	40.8	D	43.9	D	54.5	D	44.2	D	61.9	E	54.9	D	64.9	E	56.4	E	64.5	E	60.5	E	60.8	E	56.1	E
W Military Hwy (US 460) at US 58/I-664 EB Ramps	Stop Control**	15.2	B	10.8	B	35.5	E	15.1	C	40.0	E	24.8	C	123.2	F	22.9	C	17.3	C	16.7	C	19.1	C	17.9	C
S Military Hwy (US 460) at S Military Hwy (US 13/460)	Stop Control**	43.4	D	26.1	C	103.0	F	74.9	F	104.2	F	344.8	F	321.3	F	373.5	F	73.8	F	214.2	F	104.0	F	287.8	F
I-664 EB Off-Ramp/Schaefer Ave at S Military Hwy (US 460)	Stop Control**	83.3	F	357.3	F	362.3	F	795.5	F	113.8	F	311.7	F	340.7	F	745.1	F	195.6	F	603.3	F	186.8	F	367.1	F
VA 164 Interchanges																									
VA 164 WB Off-Ramp at College Dr	Signalized	5.5	A	6.2	A	6.3	A	9.7	A	6.0	A	8.6	A	6.2	A	9.9	A	5.6	A	6.8	A	5.7	A	7.7	A
VA 164 EB On-Ramp at College Dr	Signalized	5.2	A	6.0	A	5.9	A	8.2	A	5.9	A	8.2	A	5.9	A	8.3	A	5.4	A	7.2	A	5.5	A	7.5	A
US 17 at College Dr	Signalized	26.3	C	62.5	E	49.4	D	146.9	F	59.0	E	167.3	F	57.6	E	161.9	F	39.2	D	124.6	F	51.8	D	156.4	F
VA 164 WB Ramps at Towne Point Rd*	Signalized	18.9	B	18.9	B	21.9	C	19.9	B	20.4	C	19.9	B	22.0	C	21.5	C	19.5	B	20.2	C	19.1	B	20.1	C
VA 164 EB Ramps at Towne Point Rd*	Signalized	19.6	B	30.6	C	20.7	C	47.4	D	20.4	C	51.7	D	23.9	C	53.8	D	17.1	B	37.8	D	17.8	B	45.3	D
VA 164 WB Ramps at Cedar Ln	Signalized	12.4	B	17.5	B	16.1	B	19.4	B	13.9	B	18.7	B	13.8	B	48.4	D	13.2	B	32.2	C	13.2	B	35.4	D
VA 164 EB Ramps at Cedar Ln	Signalized	11.2	B	5.6	A	16.1	B	6.4	A	16.3	B	6.6	A	55.0	D	6.6	A	23.5	C	4.7	A	25.3	C	4.9	A
VA 164 WB Ramps at Virginia International Gateway Blvd	Stop Control**	10.6	B	9.8	A	11.0	B	9.9	A	11.6	B	10.0	B	10.9	B	9.8	A	10.6	B	9.8	A	10.5	B	9.7	A
Virginia International Gateway Blvd at Wild Duck Ln	Stop Control**	11.7	B	10.5	B	14.4	B	10.9	B	15.3	C	10.8	B	14.6	B	10.7	B	11.6	B	10.5	B	11.5	B	10.4	B
VA 164 EB Ramps at Virginia International Gateway Blvd	Signalized	2.1	A	2.2	A	1.9	A	2.2	A	1.9	A	2.2	A	1.4	A	1.8	A	1.4	A	1.8	A	1.4	A	1.8	A
VA 164 WB Ramps at W Norfolk Rd	Stop Control**	10.2	B	12.9	B	10.9	B	16.8	C	12.6	B	20.2	C	12.5	B	23.9	C	11.3	B	14.8	B	11.2	B	13.4	B
VA 164 EB Ramps at W Norfolk Rd	Stop Control**	10.7	B	12.4	B	11.6	B	15.4	C	12.5	B	16.3	C	16.1	C	30.2	D	11.2	B	13.4	B	11.1	B	12.9	B
RailRd Ave at Lee Ave*	Signalized	22.3	C	23.5	C	28.9	C	23.0	C	29.7	C	24.4	C	25.5	C	24.1	C	23.4	C	23.8	C	22.0	C	23.6	C
RailRd Ave at VA 164 EB Off-Ramp*	Signalized	98.8	F	12.9	B	42.9	D	14.2	B	37.7	D	12.8	B	64.3	E	14.3	B	40.2	D	14.1	B	42.8	D	14.4	B
RailRd Ave at US 58 NB/VA 164 WB Ramps	Signalized	17.5	B	17.0	B	18.6	B	18.3	B	18.2	B	16.2	B	18.3	B	16.1	B	17.2	B	16.2	B	17.5	B	16.3	B
Lee Ave at Woodrow St/Harper Ave	Signalized	6.0	A	5.1	A	6.2	A	6.2	A	6.3	A	6.1	A	6.4	A	6.5	A	6.7	A	7.2	A	6.7	A	6.9	A

	$\begin{aligned} & \text { us. Department of Transooration } \\ & \text { Federal Highway } \\ & \text { Administration } \end{aligned}$	HRCS SEIS Hampton Roads Crossing Study SEIS	
		I-664 Alternatives Comparison 2028 AM Peak Hour Volumes	
		April 2017	Figure 6-2.3

		HRCS SEIS Hampton Roads Crossing Study SEIS	
		I-664 Alternatives Comparison 2028 PM Peak Hour Volumes	
		April 2017	Figure 6-2.4

\qquad
\qquad

VDOT
U.S. oeoatronetot Transoontaion
U.s. Oopatanen of Trasesportaion
Federal Highway
Administration

Administration

HRCS SEIS
Hampton Roads Crossing Study SEIS

I-564 Alternatives Comparison

 2028 Level Of Service

VDat
L. $\begin{aligned} & \text { us. oepartmentot Transopotaion } \\ & \text { Federal Highway }\end{aligned}$ Federal Highway
Administration

HRCS SEIS
Hampton Roads Crossing Study SEIS
I-564 Alternatives Comparison
2028 Speed

7. IMPLICATIONS OF IMPLEMENTING TOLLS AND/OR HOT LANES

As discussed in Section 1, each of the Build Alternatives could accommodate tolls. The toll diversion scenarios considered for the study include: no tolls, Elizabeth River tolls only, and High Occupancy Toll (HOT) Lanes. The no toll scenario is the baseline for alternatives development. The traffic impacts of the no toll alternatives were discussed in Section 5. With the Elizabeth River toll scenario, tolls would apply to all traffic traveling on the new crossing of the Elizabeth River in Alternatives B, C, or D. The HOT Lane scenario assumes that in addition to Elizabeth River tolls, all other new travel lanes proposed under the Build Alternatives would be HOT lanes. It is assumed that any tolls, regardless of the specific scenario, would be collected electronically using overhead gantries.
It should be noted that the preliminary toll assessment discussed herein does not include final, post-processed future traffic volume projections; has not recommended toll rates; and is not appropriate for toll revenue estimation. The determination of whether tolls would be implemented as part of any of the Build Alternatives would take place after alternative selection, as appropriate. The only intent of providing the raw model output in this report is to show approximate potential shifts in traffic patterns that could be expected with the implantation of a toll on any of the Study Area Corridor roadway segments.

The modeled toll rates (both for the fixed toll and mileage-based toll) are based on initial project financing scenarios developed by HRTAC.
7.1 TRAVEL DEMAND MODEL MODIFICATIONS

The HRTPO travel demand model includes a toll component that provides the ability to code a fixed toll or mileagebased toll on any link in the model. The HRTPO model also differentiates between different vehicle classes, including Single Occupant Vehicle (SOV); High Occupancy Vehicles with 2, or 3 or more occupants (HOV2, HOV3+); and trucks. Tolls are already coded on a number of facilities in the Hampton Roads region. The model's toll component was used without modification.

Under the Elizabeth River toll-only scenario, a fixed toll of \$1 was coded on the l-564, I-664 and VA 164 connectors. However, because vehicles would always need to travel on at least two of these connectors to cross the Elizabeth River, the effective toll on the crossing is $\$ 2$.

For the HOT lanes scenario, single-lane parallel links were coded into the HRTPO travel demand model along I-64, I664 and VA 164. The travel demand network was coded so that the HOT lane could be accessed at every interchange, and that traffic could exit the HOT lane/mainline facility at every interchange as well. This is a simplified assumption that may not be feasible due to short interchange spacing in certain areas. This assumption would be further refined in future tolls studies.
Under the HOT lane scenarios, where the additional lanes would constitute HOT lanes rather than General Purpose (i.e., non-tolled) lanes, the lane configurations shown in Table 7-1 through Table 7-4 were coded into the HRTPO travel demand model.

Table 7-1: Alternative A HOT Travel Demand Model Lane Configurations

Roadway Alignments	Existing Lanes	Proposed Lanes
I-64 (Hampton)	6	6
I-64 (HRBT and Norfolk)	4	$4+2$ HOT

Table 7-2: Alternative B HOT Travel Demand Model Lane Configurations

Roadway Alignments	Existing Lanes	Proposed Lanes
I-64 (Hampton)	6	6
I-64 (HRBT and Norfolk)	4	$4+2$ HOT
l-564	6	6
I-564 Connector	none	4, fixed \$1 toll
VA 164 Connector	none	4 , fixed \$1 toll
VA 164	4	$4+2$ HOT

Table 7-3: Alternative C HOT Travel Demand Model Lane Configurations

Roadway Alignments	Existing Lanes	Proposed Lanes
I-664 (from I-64 to the proposed I- 664 Connector)	$4-6$	$6+2$ HOT
I-664 (from the proposed I-664 Connector to VA 164)	4	$6+2$ HOT
I-664 (from VA 164 to I-264)	4	$4+2$ HOT
I-564	6	4
I-564 Connector	none	4, fixed \$1 toll
VA 164 Connector	none	4, fixed \$1 toll
I-664 Connector	none	4 , fixed \$1 toll

Table 7-4: Alternative D HOT Travel Demand Model Lane Configurations

Roadway Alignments	Existing Lanes	Proposed Lanes
I-64 (Hampton)	6	6
I-64 (HRBT and Norfolk)	4	$4+2$ HOT
I-664 (from I-64 to VA 164)	$4-6$	$6+2$ HOT
I-664 (from VA 164 to I-264)	4	$4+2$ HOT
I-664 Connector	None	4, fixed \$1 toll
I-564	6	6
I-564 Connector	none	4, fixed \$1 toll
VA 164 Connector	none	4, fixed \$1 toll
VA 164	4	$4+2$ HOT

The toll rates (dollars per mile) shown in Table 7-5 were assumed for the HOT lane scenarios. Single occupancy vehicles and HOV2 vehicles would be charged a toll; HOV3+ vehicles would travel free in the HOT lanes. It should be noted that although the HOT lanes assume a mileage-based toll, the model is not capable of dynamically adjusting toll rates to maintain a pre-specified speed or LOS in the HOT lane(s).

Table 7-5: Modeled HOT Toll Rates (in dollars per mile)

Passenger Car		Commercial Vehicles (3+ axles)	
Peak	Off Peak	Peak	Off Peak
0.33	0.15	1.32	0.45

7.2 FIXED TOLLS PRELIMINARY RESULTS (SCENARIO 1)

The raw daily link volume model output for the Scenario 1 alternatives is provided in Table 7-6. There is no model run for Alternative A, because this alternative does not include any new Elizabeth River crossings.
The Alternative B results indicate that volumes on the HRBT and MMMBT would increase slightly compared to the no-toll alternative, as tolls on the new Elizabeth River connectors improve the attractiveness of the HRBT and MMMBT to drivers. A slight shift in traffic to the James River Bridge is indicated as well. Volumes on the l-564 and VA 164 Connectors would decline substantially, indicating that the additional cost of a toll may not outweigh travel time savings provided by these new connections.

Under Alternatives C and D, traffic volumes on the MMMBT show a slight decline compared to the no-toll alternative, while traffic volumes on the HRBT would increase. This pattern occurs even with the relatively larger capacity increase on the MMMBT compared to the HRBT in Alternative C. This indicates that the HRBT is the preferred means of crossing Hampton Roads, in particular when the trip between the Peninsula and the Norfolk area remains toll-free on the HRBT, compared to a trip that would involve traveling the MMMBT and the (tolled) I-664 and l-564 connectors.
Traffic volumes on the VA 164 Connector would likely see the largest decline with the implementation of a toll, indicating that travelers using the VA 164 Connector would find alternate, lower cost routes to and from the Norfolk area from areas to the south.

Table 7-6: Toll Scenario 1 Output

	I-64	I-664	US 17	I-664 Connector	I-564 Connector	$\begin{gathered} 164 \\ \text { Connector } \end{gathered}$
Alternative B (No tolls)	153,300	94,200	48,000		63,900	63,900
Alternative B Toll Diversion Scenario 1	155,200	95,200	49,300		20,800	20,800
Volume Difference	1,900	1,000	1,300		-43,100	-43,100
Percent Difference	1\%	1\%	3\%		-67\%	-67\%
Alternative C (No tolls)	110,200	150,300	45,800	87,800	111,100	36,300
Alternative C Toll Diversion Scenario 1	113,200	143,600	46,000	63,200	65,700	3,200
Volume Difference	3,000	-6,700	200	-24,600	-45,400	-33,100
Percent Difference	3\%	-4\%	0\%	-28\%	-41\%	-91\%
Alternative D (No tolls)	137,900	133,900	45,800	81,700	107,300	38,500
Alternative D Toll Diversion Scenario 1	145,700	124,000	46,700	51,700	53,900	3,000
Volume Difference	7,800	-9,900	900	-30,000	-53,400	-35,500
Percent Difference	6\%	-7\%	2\%	-37\%	-50\%	-92\%

Caution: Raw model output is shown. This information is provided to indicate approximate potential shifts in traffic patterns only.

7.3 HOT LANE PRELIMINARY RESULTS (SCENARIO 2)

The raw daily link volume model output for the Scenario 2 alternatives is provided in Table 7-7. This table provides the daily link volumes for both the General Purpose (i.e., non-tolled) lanes as well as the HOT lanes for each alternative.

Under Alternative A, implementation of HOT lanes on the HRBT indicates a slight overall reduction in traffic volumes on the HRBT, with some of the traffic shifting to the MMMBT.
Under Alternative B, the volume reduction on the HRBT would be slightly larger, with almost all of the volume shift being absorbed by the MMMBT. Traffic volumes on the $1-564$ and VA 164 connectors would be essentially unchanged from the volumes under Scenario 1.
Compared to the HOT lane volumes on the HRBT under Alternatives A and B, HOT lane volumes on the MMMBT would be substantially less under both Alternative C and D. This is likely due to the longer distance that drivers choosing to take the MMMBT would need to travel between the Peninsula and Norfolk and the higher toll cost they would incur. It is also an indication that congestion on the MMMBT is projected to be lower, in particular under Alternative C where the toll scenario assumed that four General Purpose Lanes would remain, and the fifth lane would be converted from a transit-only lane to a HOT lane. When congestion in the General Purposes lanes is relatively low, there is little incentive for drivers to pay for a trip using the HOT lanes. Finally, because at this preliminary stage it was assumed that the HOT lanes could be accessed and exited at every interchange within the study area, the model may assign traffic to HOT lanes to bypass isolated locations of network congestion.

Hampton Roads Crossing Study SEIS

Table 7-7: Toll Scenario 2 Output

	I-64	I-664	US 17	I-664 Connector	I-564 Connector	$\begin{gathered} 164 \\ \text { Connector } \end{gathered}$
Alternative A (No tolls)	156,300	95,300	49,900			
General Purpose Lanes	113,600	99,100	49,000			
HOT Lanes	36,800	0	0			
Alternative A - Toll Diversion Scenario 2	150,400	99,100	49,000			
Volume Difference	-5,900	3,800	-900			
Percent Difference	-4\%	4\%	-2\%			
Alternative B (No tolls)	153,300	94,200	48,000		63,900	63,900
General Purpose Lanes	113,900	99,300	48,500		21,400	21,400
HOT Lanes	31,400	0	0		0	0
Alternative B - Toll Diversion Scenario 2	145,300	99,300	48,500		21,400	21,400
Volume Difference	-8,000	5,100	500		-42,500	-42,500
Percent Difference	-5\%	5\%	1\%		-67\%	-67\%
Alternative C (No tolls)	110,200	150,300	45,800	87,800	111,100	36,300
General Purpose Lanes	115,900	129,700	46,500	36,000	43,300	8,100
HOT Lanes	0	5,700	0	0	0	0
Alternative C - Toll Diversion Scenario 2	115,900	135,400	46,500	36,000	43,300	8,100
Volume Difference	5,700	-14,900	700	-51,800	-67,800	-28,200
Percent Difference	5\%	-10\%	2\%	-59\%	-61\%	-78\%
Alternative D (No tolls)	137,900	133,900	45,800	81,700	107,300	38,500
General Purpose Lanes	113,700	119,500	46,900	30,100	37,800	8,400
HOT Lanes	26,400	3,600	0	0	0	0
Alternative D - Toll Diversion Scenario 2	140,100	123,100	46,900	30,100	37,800	8,400
Volume Difference	2,200	-10,800	1,100	-51,600	-69,500	-30,100
Percent Difference	2\%	-8\%	2\%	-63\%	-65\%	-78\%

8. UPDATED YEAR 2040 FORECASTS AND ANALYSES

After completion of the Draft SEIS, the Hampton Roads Transportation Planning Organization (HRTPO) released an update of the regional travel demand model on August 8, 2016. This model update incorporates the latest adopted land use forecasts for a new horizon year (2040) as well as the transportation improvement projects for the latest adopted long range transportation plan. The updated HRTPO socio-economic forecasts project a 2% lower total population, and a 4% increase in total employment within the Hampton Roads region compared to the 2034 forecast. The change in total employment includes a 32 percent increase in retail employment, and a 4 percent decrease in non-retail employment.
For the Final SEIS, forecasts for the No Build scenario and Preferred Alternative were updated using the updated HRTPO socio economic data and transportation network improvements. The hot-spot corridor analyses were updated based on the new travel demand model. Results are provided below.
As discussed in Section 2.4, traffic forecasts were developed using the Hampton Roads TPO travel demand model. The model output was post-processed to obtain design year 2040 daily and peak hour volumes. These peak hour volumes were analyzed to obtain peak hour Level of Service (LOS) and estimated end-to-end travel time for each Study Area Corridor. The results of these analyses are summarized in Section 5.1; detailed analysis results are provided in Sections 5.3 and 8.4.

Model output (for the horizon year 2040) was aggregated to provide additional insight in the operational benefits of the Preferred Alternative. This information is presented in Section 5.2
8.1 SUMMARY

A summary of daily traffic volumes on key roadway links within the study area under each of the alternatives is provided in Table 5-1. A comparison of daily traffic volumes on the HRBT and MMMBT for 2015 and 2040 conditions for each alternative is provided in Figure 5-1. A summary of projected LOS is provided in Table 5-2. A summary of estimated travel times along key Study Area Corridors between major interchanges is provided in Table 5-3. It should be noted that the travel time estimates were developed from planning-level capacity analysis output and are intended only to indicate relative changes in travel time between alternatives. Additional and/or different segments could be reported in the Final SEIS depending on the Preferred Alternative.

Table 8-1: 2040 Daily Traffic Volumes at Key Roadway Segments

Roadway Segment	$\mathbf{2 0 1 5}$	$\mathbf{2 0 4 0}$ No-Build (Updated)	$\mathbf{2 0 4 0}$ Preferred Alternative
HRBT	91,000	101,500	129,800
MMMBT	69,300	85,600	82,800
VA 164*	49,000	66,500	64,300

* Between the Towne Point Road and College Drive Interchanges

Figure 8-1: 2040 Projected Daily Traffic Volumes at the HRBT and MMMBT

Table 8-2: 2040 Projected LOS at Key Roadway Segments

Roadway Segment	AM Peak					
	Eastbound			Westbound		
	Existing	$\begin{aligned} & 2040 \text { No- } \\ & \text { Build } \\ & \text { (Updated) } \end{aligned}$	2040 Preferred Alternative	Existing	$\begin{gathered} 2040 \text { No- } \\ \text { Build } \\ \text { (Updated) } \\ \hline \end{gathered}$	2040 Preferred Alternative
HRBT	F	F	F	F	F	F
MMMBT	C	D	C	F	E	D
VA 164	C	D	D	B	C	C
Roadway Segment	PM Peak					
	Eastbound			Westbound		
	Existing	$\begin{aligned} & \hline 2040 \text { No- } \\ & \text { Build } \\ & \text { (Updated) } \end{aligned}$	2040 Preferred Alternative	Existing	$\begin{gathered} \hline 2040 \text { No- } \\ \text { Build } \\ \text { (Updated) } \\ \hline \end{gathered}$	2040 Preferred Alternative
HRBT	F	F	F	F	F	D
MMMBT	F	F	F	C	C	C
VA 164	C	C	C	C	D	D

Figure 8-2 shows the mainline volume for each roadway segment along the Study Area Corridors for the Existing, 2040 No-Build, and 2040 Build Alternatives.

Figure 8-3 presents a summary of the projected mainline LOS. This summary is provided in the same format as the volume exhibit in Figure 8-2, and shows the projected mainline LOS as well as the projected LOS for each merge, diverge, and weaving area along all Study Area Corridors for each alternative. Mainline average travel speeds, which are the basis for summaries in Table 8-3, are presented in Figure 8-4.

Table 8-4 presents the intersection LOS for all ramp terminal intersections for the Existing, 2040 No-Build Alternative, and 2040 Preferred Alternative.

Table 8-3: 2040 Estimated End-to-End Travel Times by Study Area Corridor

Segment	Direction	AM Peak Travel Time (minutes/vehicle)		
		Existing	2040 No-Build (Updated)	2040 Preferred Alternative
1-64	Eastbound	18.3	19.8	18.4
	Westbound	17.3	20.1	17.0
$\begin{gathered} \text { I-664 (1-64 to } \\ \text { VA 164) } \end{gathered}$	Eastbound	15.1	15.4	15.2
	Westbound	16.3	17.9	17.4
$\begin{aligned} & \text { I-664 (VA } 164 \\ & \text { to I-264) } \end{aligned}$	Eastbound	7.7	7.7	7.7
	Westbound	7.9	7.9	7.9
VA 164	Eastbound	6.4	6.5	6.5
	Westbound	6.1	6.1	6.1
Segment	Direction	PM Peak Travel Time (minutes/vehicle)		
		Existing	2040 No-Build (Updated)	2040 Preferred Alternative
1-64	Eastbound	17.7	20.2	18.0
	Westbound	16.6	18.3	14.6
$\begin{gathered} \text { I-664 (I-64 to } \\ \text { VA 164) } \end{gathered}$	Eastbound	17.7	19.9	19.6
	Westbound	14.6	14.7	14.7
$\begin{gathered} \text { I-664 (VA } 164 \\ \text { to I-264) } \\ \hline \end{gathered}$	Eastbound	7.7	7.7	7.7
	Westbound	7.8	8.0	7.9
VA 164	Eastbound	6.4	6.4	6.4
	Westbound	6.1	6.2	6.1

Table 8-4: 2040 Intersection Capacity Analyses Results

Intersection	Control Type	Existing				2040 No-Build (Updated)				2040 Preferred Alternative			
		AM		PM		AM		PM		AM		PM	
		Delay (s)	LOS										
I-64 Interchanges													
VA-134 at l-64 WB On Ramp*	Signalized	17.9	B	19.1	B	20.2	C	22.2	C	19.3	B	21.6	C
LaSalle Avenue at Armistead Avenue*	Signalized	19.7	B	23.8	C	21.4	C	26.3	C	22.2	C	27.1	C
I-64 EB Off Ramp at Rip Rap Road	Signalized	15.3	B	17.5	B	16.6	B	18.0	B	18.8	B	21.9	C
Settlers Landing Rd. at E Tyler St.	Signalized	24.5	C	17.4	B	32.5	C	26.0	C	30.5	C	24.2	C
Settlers Landing Rd. at I-64 SB On Ramp	Yield Control***	11.5	B	13.9	B	13.9	B	23.1	C	12.2	B	15.6	C
Settlers Landing Rd. at I-64 NB On Ramp	Signalized	21.3	C	23.2	C	28.8	C	50.2	D	34.0	C	71.0	E
I-64 SB Ramps at S Mallory St.	Signalized	8.4	A	98.6	F	10.5	B	120.1	F	12.1	B	34.8	C
I-64 NB Ramps at S Mallory St.	Signalized	72.2	E	19.9	B	84.1	F	29.0	C	33.2	C	22.4	C
1-64 SB Ramps at 4th View St	Stop Control**	7.5	A	14.1	B	8.6	A	190.1	F	9.7	A	323.1	F
I-64 NB Ramps at 4th View St	Stop Control**	11.9	B	95.6	F	13.3	B	260.2	F	13.7	B	304.8	F
US 460 at I-64 NB On Ramp	Yield Control***	15.7	B	12.8	B	15.8	C	11.9	B	23.8	C	17.5	C
1-564 Interchanges													
1-564 at Bainbridge Ave	Signalized	13.9	B	37.6	D	12.0	B	30.3	C	11.5	B	23.6	C
1-664 Interchanges													
Powhatan Parkway at I-664 North Ramp	Signalized	24.8	C	27.3	C	11.4	B	16.2	B	14.0	B	16.9	B
Powhatan Parkway at l-664 South Ramp	Signalized	14.2	B	20.3	C	20.6	C	22.9	C	23.9	C	22.3	C
Aberdeen Road at I-664 North Ramp	Signalized	14.9	B	7.7	A	9.1	A	11.4	B	9.3	A	11.5	B
Aberdeen Road at I-664 South Ramp	Signalized	10.2	B	12.8	B	22.5	C	8.8	A	22.3	C	8.4	A
Chestnut Avenue at I-664 South Off Ramp	Signalized	0.2	A	0.2	A	0.3	A	0.2	A	0.3	A	0.2	A
Chestnut Avenue at I-664 North On Ramp	Signalized	3.1	A	13.6	B	4.3	A	17.4	B	4.1	A	15.0	B
Chestnut Avenue at 39th Street	Signalized	22.1	C	16.9	B	13.6	B	16.2	B	12.8	B	15.5	B
Roanoke Avenue at I-664 South On-Ramp	Stop Control**	9.9	A	10.3	B	10.6	B	11.0	B	9.9	A	10.1	B
Roanoke Avenue at l-664 North Off-Ramp	Signalized	17.2	B	11.7	B	14.6	B	19.7	B	12.9	B	19.0	B
Roanoke Avenue at 39th Street	Signalized	10.6	B	8.4	A	19.3	B	19.3	B	18.0	B	17.2	B
Jefferson Avenue at 36th Street	Signalized	21.2	C	19.5	B	21.0	C	17.4	B	20.9	C	18.4	B
Jefferson Avenue at 35th Street	Signalized	3.6	A	7.0	A	9.3	A	8.4	A	9.4	A	10.9	B
Jefferson Avenue at 27th Street	Signalized	10.8	B	13.5	B	11.0	B	13.4	B	11.2	B	13.1	B
Jefferson Avenue at 26th Street	Signalized	9.8	A	10.5	B	11.3	B	11.0	B	9.6	A	10.5	B
Jefferson Avenue at MLK JR At 25th Street	Signalized	9.6	A	11.4	B	11.8	B	13.9	B	11.9	B	14.4	B
Huntington Avenue at 35th Street	Signalized	17.9	B	12.9	B	18.6	B	13.0	B	19.0	B	14.3	B
Huntington Avenue at 34th Street	Signalized	18.9	B	21.5	C	22.4	C	22.8	C	22.4	C	23.4	C
Huntington Avenue at 28th Street	Signalized	8.7	A	9.6	A	12.8	B	12.7	B	12.7	B	11.3	B
Huntington Avenue at 26th Street	Signalized	23.5	C	20.1	C	20.5	C	22.9	C	21.9	C	24.8	C
Huntington Avenue at MLK JR At 25th Street	Stop Control**	9.3	A	10.2	A	10.4	B	10.5	B	10.4	B	10.4	B
Terminal Avenue at WB I-664 Off Ramp	Stop Control**	9.1	A	9.6	A	10.1	B	10.8	B	9.3	A	10.4	B
US 17 at Townpoint Rd	Stop Control**	164.0	F	85.0	F	735.4	F	499.0	F	729.0	F	459.0	F
Ramp to I-664 South On US 17	Yield Control***	11.2	B	11.7	B	17.2	C	19.6	C	17.4	C	19.9	C
I-664 SB Ramps at Pughsville Rd	Signalized	17.5	B	57.4	E	31.4	C	35.1	D	29.8	C	34.3	C
I-664 NB Off-Ramp at Pughsville Rd	Signalized	5.3	A	8.5	A	6.2	A	10.6	B	6.5	A	10.6	B
I-664 SB Ramps at Dock Landing Rd	Signalized	7.4	A	11.6	B	12.9	B	14.0	B	12.8	B	13.8	B

Intersection	Control Type	Existing				2040 No-Build (Updated)				2040 Preferred Alternative			
		AM		PM		AM		PM		AM		PM	
		Delay (s)	LOS										
I-664 NB Ramps at Dock Landing Rd	Signalized	9.6	A	8.6	A	13.3	B	13.7	B	13.2	B	15.5	B
W Military Hwy (US 13/58)/Airline Blvd at US 460 Alt/Joliff Rd	Signalized	40.8	D	43.9	D	101.7	F	81.1	F	117.5	F	129.8	F
W Military Hwy (US 460) at US 58/l-664 EB Ramps	Stop Control**	15.2	B	10.8	B	152.9	F	20.5	C	139.0	F	51.0	F
S Military Hwy (US 460) at S Military Hwy (US 13/460)	Stop Control**	43.4	D	26.1	C	51.8	F	412.1	F	337.0	F	934.0	F
I-664 EB Off-Ramp/Schaefer Ave at S Military Hwy (US 460)	Stop Control**	83.3	F	357.3	F	759.7	F	1447.0	F	370.0	F	957.0	F
VA 164 Interchanges													
VA 164 WB Off-Ramp at College Dr	Signalized	5.5	A	6.2	A	6.1	A	10.1	B	5.9	A	9.2	A
VA 164 EB On-Ramp at College Dr	Signalized	5.2	A	6.0	A	6.1	A	9.3	A	6.1	A	9.4	A
US 17 at College Dr	Signalized	26.3	C	62.5	E	52.6	D	148.9	F	63.0	E	168.5	F
VA 164 WB Ramps at Towne Point Rd*	Signalized	18.9	B	18.9	B	21.3	C	20.0	C	19.5	B	19.8	B
VA 164 EB Ramps at Towne Point Rd*	Signalized	19.6	B	30.6	C	25.9	C	62.7	E	23.9	C	61.0	E
VA 164 WB Ramps at Cedar Ln	Signalized	12.4	B	17.5	B	22.7	C	31.2	C	14.0	B	20.5	C
VA 164 EB Ramps at Cedar Ln	Signalized	11.2	B	5.6	A	14.4	B	6.2	A	16.8	B	6.6	A
VA 164 WB Ramps at Virginia International Gateway Blvd	Stop Control**	10.6	B	9.8	A	11.9	B	10.2	B	11.5	B	10.0	B
Virginia International Gateway Blvd at Wild Duck Ln	Stop Control**	11.7	B	10.5	B	15.4	C	11.4	B	14.8	B	10.8	B
VA 164 EB Ramps at Virginia International Gateway Blvd	Signalized	2.1	A	2.2	A	1.8	A	10.2	B	1.8	A	2.3	A
VA 164 WB Ramps at W Norfolk Rd	Stop Contro***	10.2	B	12.9	B	11.1	B	19.5	C	12.5	B	23.5	C
VA 164 EB Ramps at W Norfolk Rd	Stop Control**	10.7	B	12.4	B	11.9	B	16.8	C	13.3	B	18.1	C
Railroad Ave at Lee Ave*	Signalized	22.3	C	23.5	C	30.3	C	23.3	C	32.3	C	24.5	C
Railroad Ave at VA 164 EB Off-Ramp*	Signalized	98.8	F	12.9	B	37.8	D	14.4	B	34.9	C	12.3	B
Railroad Ave at US 58 NB/VA 164 WB Ramps	Signalized	17.5	B	17.0	B	18.0	B	17.3	B	18.0	B	16.1	B
Lee Ave at Woodrow St/Harper Ave	Signalized	6.0	A	5.1	A	5.6	A	5.2	A	6.1	A	5.9	A

Hampton Roads Crossing Study SEIS
8.2 KEY STUDY AREA SEGMENT IMPACTS

To evaluate how the alternatives could improve traffic operations along the Study Area Corridors, VDOT and FHWA worked with the Cooperating and Participating Agencies to identify four "hot spots" along the Study Area Corridors that currently experience high levels of congestion. As these areas experience high levels of congestion now, it can be anticipated that they also would be the most highly congested areas along the Study Area Corridors in the future. The agencies identified data available from the travel demand model that could be used to compare the alternatives. These four sections are presented below along with summary tables and figures that show how different alternatives could improve operations in these hot spots. The four key study area segments are listed below, and shown in Figure 5-5

- Hampton Roads Bridge-Tunnel (HRBT) - Segments F, G and H
- I-564 - Segment I
- I-664 - Monitor Merrimac Memorial Bridge-Tunnel (MMMBT) - Segments C, D and E
- I-664 - Bowers Hill - Segment A

The impacts on these segments are discussed in Sections 8.2.1 through 8.2.4. The complete travel demand output from which the data for the above four segments was extracted is provided in Appendix K.

8.2.1 HRB

Table 8-5 shows the travel demand model output for the section of I-64 between I-664 and I-564, which includes the HRBT bottleneck. Several performance measures are provided that indicate projected travel demand on the facility (daily vehicles miles traveled) and the level of congestion (travel time delay and daily vehicle hours traveled).
Table 8-6 indicates that under No-Build conditions, both VMT and VHT are projected to increase, along with significant increases in delay, in particular in the westbound direction. Compared to the No-Build Alternative, delays are projected to decline under the Preferred Alternative, despite an increase in VMT. Additionally, the improvements in travel time and reductions in delay are illustrated in Figures 8-5 through 8-7

Table 8-5: I-64 HRBT PM Peak Travel Time Comparison - between I-664 and I-564

Performance Measure		Existing (2015)	No-Build Updated (2040)	Preferred Alternative (2040)
PM Peak Travel Time (minutes)	EB	20	25	18
	WB	25	50	37
PM Peak Speed (congested speed MPH)	EB	36	28	39
	WB	29	14	18
PM Peak Delay (minutes)	EB	7	14	6
	WB	12	39	0
Daily VHT		32,234	56,100	53,980
Daily VMT		1,099,600	1,349,800	1,717,400
Daily Delay		11,000	27,100	25,100

Figure 8-6: I-64 HRBT 2040 PM Peak Hour Travel Time for No-Build Conditions

Figure 8-7: 2040 PM Peak Hour Travel Time Savings along I-64 HRBT Compared to No-Build Conditions

8.2.2 I-564

Table 8-6 shows the travel demand model output for the section of I-564 and the Intermodal Connector between I64 and the proposed NIT/Navy interchange
Table 8-6 indicates that under No-Build and Preferred Alternative conditions, both VMT and VHT are projected to increase, compared to existing conditions, although delays are projected to remain minimal. Additionally, changes in travel time and delay are illustrated in Figures 8-8 and 8-9.

Table 8-6: I-564 AM Peak Travel Time Comparison - between I-64 and the Proposed NIT/Navy Interchange

Performance Measure		Existing (2015)	No-Build Updated (2040)	Preferred Alternative (2040)
AM Peak Travel Time (minutes)	EB	2	2	2
	WB	2	3	3
	EB	56	60	60
	WB	47	53	54
PM Peak Delay (minutes)	EB	0	0	0
	WB	0.3	0	0
Daily VHT		1,024	1,200	1,200
Daily VMT		51,200	67,600	69,100
Daily Delay	0	100	100	

VMT, and VHT are projected to decrease as traffic would be expected to shift to the HRBT. Additionally, improvements in travel time and reductions in delay are illustrated in Figures 8-10 through 8-12.

Figure 8-8: I-564 AM Peak Traffic Travel Time Comparison

Figure 8-9: I-564 2040 AM Peak Hour Travel Time for No-Build Conditions

Table 8-7: I-664 MMMBT PM Peak Travel Time Comparison - between I-64 and College Drive

Performance Measure		$\begin{aligned} & \hline \text { Existing } \\ & \text { (2015) } \end{aligned}$	No-Build Updated (2040)	Preferred Alternative (2040)
PM Peak Travel Time (minutes)	SB	12	15	14
	NB	19	25	19
PM Peak Speed (congested speed MPH)	SB	58	45	47
	NB	37	28	36
PM Peak Delay (minutes)	SB	0	4	4
	NB	7	14	8
Daily VHT		18,551	24,200	20,000
Daily VMT		838,200	1,046,800	975,800
Total Delay		1,600	8,500	4,400

Figure 8-10: I-664 MMMBT PM Peak Traffic Travel Time Comparison

8.2.3 МММВТ

Table 8-7 shows the travel demand model output for the section of I-664 between I-64 and College Drive, which includes the MMMBT bottleneck.
Table 8-7 indicates that under No-Build conditions, both VMT and VHT are projected to increase, along with significant increases in delay, in particular in the northbound direction. Under the Preferred Alternative, delays,

indicating a traffic shift to the HRBT. Additionally, improvements in travel time and reductions in delay are illustrated in Figures 8-13 through 8-15.

Table 8-8: I-664 Bowers Hill PM Peak Travel Time Comparison - between VA 164 and I-264

Performance Measure		$\begin{aligned} & \hline \text { Existing } \\ & \text { (2015) } \end{aligned}$	No-Build Updated (2040)	Preferred Alternative (2040)
PM Peak Travel Time (minutes)	SB	8	11	10
	NB	8	7	7
PM Peak Speed (congested speed MPH)	SB	50	58	59
	NB	51	44	47
PM Peak Delay (minutes)	SB	1	1	1
	NB	1	4	3
Daily VHT		12,330	12,700	12,000
Daily VMT		622,030	689,500	669,100
Total Delay		900	3,100	2,400

Figure 8-12: 2040 PM Peak Hour Travel Time Savings along I-664 MMMBT Compared to No-Build Conditions

8.2.4 I-664 Bowers Hill

Table 8-8 shows the travel demand model output for the section of I-664 between VA 164 and I-264, which includes the Bowers Hill bottleneck.
Table 8-8 indicates that under No-Build conditions, both VMT and VHT are projected to increase, along with an increase in delay in the southbound direction. Compared to the No-Build alternative, delays are projected to decline slightly in the southbound direction VMT and delays are projected to decrease under the Preferred Alternative,

Figure 8-14: I-664 Bowers Hill 2040 PM Peak Hour Travel Time for No Build Conditions

Figure 8-15: 2040 PM Peak Hour Travel Time Savings along I-664 Bowers Hill Compared to No-Build Conditions

8.3 UPDATED 2040 NO-BUILD ALTERNATIVE

As described in Section 1.1.2.1, the No-Build Alternative does not assume any improvements or capacity enhancements along any of the Study Area Corridors. All projects that are contained in the region's Long Range Transportation Plan are assumed to be in place. In consultation with VDOT, the following roadway network modification were made as part of the 2040 No-Build forecast

- Eliminated the US 460/US 58/US 13 Connector project
- Removed tolls from all existing and proposed river crossings except for the Midtown Tunnel (US 58) and the Downtown Tunnel (I-264); and,
- Added third General Purpose lane to I-64 between I-264 (Bowers Hill interchange) and I-464, and one HOV lane in each direction. The HOV lane ties into the existing HOV system east of l-464, and has the same peak hour occupancy restrictions as the existing system
These roadway network modifications were retained for all 2040 modeling scenarios.
The 2040 No-Build forecast shows continuing growth in regional traffic volumes throughout the region. Daily traffic volumes on the HRBT are projected to increase 12 percent compared to 2015 volumes (from 91,000 to 101,500 vehicles per day), while daily traffic volumes on the MMMBT and VA 164 are projected to grow by 24 and 36 percent, respectively (from 69,300 to 85,600 and 49,000 to 66,500 vehicles per day, respectively).
Detailed daily volumes for 2040 No-Build conditions, including daily turning movement volumes at the ramp terminal intersections, are provided in Appendix \mathbf{N} in Figures N.1-1 through N.1-15.

Along with the daily volumes, AM and PM peak hour volumes increase correspondingly on the Study Area Corridor roadways. A summary of the 2040 No-Build mainline peak hour volumes is provided in Figure 8-16. Detailed AM and PM peak hour volumes for the 2040 No-Build Alternative, including turning movement volumes at the ramp terminal intersections, are provided in Appendix \mathbf{N} in Figures N.2-1 through N.2-15

Table 8-4 presents the intersection LOS for all ramp terminal intersections,
Detailed LOS exhibits for the No-Build Alternative are provided in Appendix \mathbf{N} in Figures N.3-1 through N.3-15
8.3.1 Operational Analysis

Capacity analyses of the 2040 No-Build peak hour volumes, shown in Figure 8-3, indicate increasingly poor operating conditions along I-64 and I-664, with a number of additional segments projected to operate at LOS F, which represents a breakdown in traffic flow with volumes exceeding capacity. In particular, I-64 approaching the HRBT is projected to experience LOS F beginning at interchanges that are further upstream compared to 2015 conditions Similarly, I-664 westbound approaching the MMMBT during the AM peak hour and I-664 eastbound during the PM peak hour is projected to experience LOS F beginning at interchanges that are further upstream of the bridge-tunnel compared to 2015 conditions.

Traffic operations along VA 164 are projected to be worse than under existing conditions but remain generally acceptable (LOS D or better) during the AM peak hour. During the PM peak hour, westbound VA 164 is projected to approach capacity (LOS E) in a number of segments. Along I-564, acceptable operating conditions of LOS D or better are projected in the non-peak directions (eastbound during the AM peak hour, westbound during the PM peak hour). During the PM peak hour, LOS F operating conditions are projected along eastbound I-564 between the Terminal Boulevard on-ramp and the I-64/I-564 interchange
Table 8-9 summarizes the No-Build LOS by Study Area Corridor for key roadway segments.

Table 8-9: 2040 No-Build (Updated) LOS at Key Roadway Segments

Roadway Segment	AM Peak			
	Eastbound		Westbound	
	Existing	2040 NB (Updated)	Existing	2040 NB (Updated)
HRBT	F	F	F	F
MMMBT	C	D	F	E
VA 164	C	D	B	C
Roadway Segment	PM Peak			
	Eastbound		Westbound	
	Existing	2040 NB (Updated)	Existing	2040 NB (Updated)
HRBT	F	F	F	F
MMMBT	F	F	C	F
VA 164	C	C	C	D

8.3.2 Travel Time

In addition to worsening LOS due to highly congested conditions, the end-to-end travel times along Study Area Corridors are generally projected to increase in the future along I-64 and I-664. Along VA 164, travel times would be similar to existing conditions. Table 8-10 summarizes the average existing and No-Build travel times in minutes per vehicle by Study Area Corridor.
It should be noted that these estimates were developed from planning-level capacity analysis output and are intended only to indicate relative changes in travel time between alternatives.

Table 8-10: 2040 No-Build (Updated) Estimated End-to-End Travel Time by Study Area Corridor

Segment	Direction	AM Peak Travel Time (minutes/vehicle)	
		Existing	2040 NB (Updated)
I-64	Eastbound	18.3	19.8
	Westbound	17.3	20.1
I-664 (I-64 to VA 164)	Eastbound	15.1	15.4
	Westbound	16.3	17.9
I-664 (VA 164 to I-264)	Eastbound	7.7	7.7
	Westbound	7.9	7.9
VA 164	Eastbound	6.4	6.5
	Segment	Westbound	6.1
I-64	Direction	PM Peak Travel Time (minutes/vehicle)	
		Existing	2040 NB (Updated)
I-664 (I-64 to VA 164)	Eastbound	17.7	20.2
	Westbound	16.6	18.3
	Eastbound	17.7	19.9
VA 164	Westbound	14.6	14.7
	Eastbound	7.7	7.7
	Westbound	7.8	8.0
	Eastbound	6.4	6.4
	Westbound	6.1	6.2

8.42040 PREFERRED AITERNATIV

The Preferred Alternative involves widening I-64 to three lanes in each direction from South Mallory Street to the I 64/l-564 interchange and construction of a new bridge-tunnel on the HRBT. The new lanes were coded into the HRTPO travel demand model, and the raw model output was processed as described in Section 2.4. The resulting daily traffic volumes on the key roadways are summarized in Table 8-1
The 2040 Preferred Alternative traffic forecast shows that the widening of I-64 between South Mallory Street and I 564 would result in a considerable shift of traffic volumes to the HRBT, along with a slight decrease in daily volume on the MMMBT compared to No-Build conditions. Projected daily traffic volumes on the HRBT would increase 23 percent compared to 2040 No-Build volumes (from 112,200 to 137,700 vehicles per day). Volumes would decreas approximately two percent both on the MMMBT and on VA 164 (from 90,700 to 89,200 and from 65,600 to 64,000 vehicles per day, respectively), but would be greater than 2015 volumes.

Detailed daily volumes for 2040 Preferred Alternative conditions, including daily turning movement volumes at the ramp terminal intersections, are provided in Appendix \mathbf{O} in Figures 0.1-1 through 0.1-15.

Detailed AM and PM peak hour volumes for the Preferred Alternative conditions, including turning movement volumes at the ramp terminal intersections, are provided in Appendix \mathbf{O} in Figures 0.2-1 through 0.2-15

Table 8-4 presents the intersection LOS for all ramp terminal intersections
Detailed LOS exhibits for the Preferred Alternative are provided in Appendix O in Figures 0.3-1 through 0.3-15.

.4.1 Operational Analys

Capacity analyses of the 2040 Preferred Alternative peak hour volumes, provided in Figure 8-3, show that operations along l-64 west of the HRBT are generally projected to be worse than 2040 No-Build conditions, with some segments approaching capacity (LOS E). East of the HRBT, where additional capacity would be provided by widening the existing four-lane section to six lanes, operations are generally projected to improve compared to No-Build conditions, from LOS E and LOS F to LOS D or better, except east of the ramp to l-564/Granby Street.

Along l-664 and VA 164, where no capacity would be added, operations are generally projected to be comparable to 2040 No-Build conditions.
Along I-564, acceptable operating conditions of LOS D or better are projected in the non-peak directions (eastbound during the AM peak hour, westbound during the PM peak hour). During the PM peak hour, LOS F operating conditions are projected between the Terminal Boulevard on-ramp and the I-64/I-564 interchange, similar to the 2040 No-Build conditions

Table 8-11 summarizes the Preferred Alternative LOS by Study Area Corridor

Table 8-11: 2040 Preferred Alternative Projected LOS at Key Roadway Segments

Roadway Segment	AM Peak					
	Eastbound			Westbound		
	Existing	$\begin{aligned} & 2040 \text { No- } \\ & \text { Build } \\ & \text { (Updated) } \end{aligned}$	 2040 Preferred Alternative	Existing	$\begin{aligned} & \hline 2040 \text { No- } \\ & \text { Build } \\ & \text { (Updated) } \\ & \hline \end{aligned}$	2040 Preferred Alternative
HRBT	F	F	F	F	F	F
MMMBT	C	D	C	F	E	D
VA 164	C	D	D	B	C	C
PM Peak						
Roadway Segment	Eastbound			Westbound		
	Existing	$\begin{aligned} & 2040 \text { No- } \\ & \text { Build } \\ & \text { (Updated) } \\ & \hline \end{aligned}$	2040 Preferred Alternative	Existing	$\begin{aligned} & \hline 2040 \text { No- } \\ & \text { Build } \\ & \text { (Updated) } \\ & \hline \end{aligned}$	2040 Preferred Alternative
HRBT	F	F	F	F	F	D
MMMBT	F	F	F	C	C	C
VA 164	C	C	C	C	D	D

8.4.2 Travel Time

Compared to 2040 No-Build conditions, end-to-end travel times along I-64 are projected to improve under the Preferred Alternative. The travel times along I-664 and VA 164 would be approximately the same under No-Build conditions and Alternative A conditions, with some slight improvements to the westbound I-664 travel time north of VA 164 during the AM peak and eastbound during the PM peak. Table $5-13$ summarizes the average travel times in minutes per vehicle by Study Area Corridor for Alternative A.

It should be noted that these estimates were developed from planning-level capacity analysis output and are intended only to indicate relative changes in travel time between alternatives.

Hampton Roads Crossing Study SEIS

Segment	Direction	AM Peak Travel Time (minutes/vehicle)		
		Existing	2040 NB (Updated)	2040 Preferred Alternative
1-64	Eastbound	18.3	19.8	18.4
	Westbound	17.3	20.1	17.0
I-664 (I-64 to VA 164)	Eastbound	15.1	15.4	15.2
	Westbound	16.3	17.9	17.4
I-664 (VA 164 to I-264)	Eastbound	7.7	7.7	7.7
	Westbound	7.9	7.9	7.9
VA 164	Eastbound	6.4	6.5	6.5
	Westbound	6.1	6.1	6.1
Segment	Direction	PM Peak Travel Time (minutes/vehicle)		
		Existing	2040 NB (Updated)	2040 Preferred Alternative
1-64	Eastbound	17.7	20.2	18.0
	Westbound	16.6	18.3	14.6
I-664 (I-64 to VA 164)	Eastbound	17.7	19.9	19.6
	Westbound	14.6	14.7	14.7
I-664 (VA 164 to I-264)	Eastbound	7.7	7.7	7.7
	Westbound	7.8	8.0	7.9
VA 164	Eastbound	6.4	6.4	6.4
	Westbound	6.1	6.2	6.1

9. REFERENCES

Furth, Peter G. 1990. Model of Turning Movement Propensity. Transportation Research Record, Issue 1287, Transportation Research Board.

Hampton Roads Transportation Planning Organization. December 2013. Hampton Roads Model Methodology Report (Version 1.0)
Hampton Roads Transportation Planning Organization. June 2014. Hampton Roads Model Release Notes (Version 1.1)

Horowitz, Alan; Creasey, Tom; Pendyala, Ram; Chen, Mei. 2014. Analytical Travel Forecasting Approaches for Project-Level Planning and Design. NCHRP Report, CDM Smith, Issue 765.

Pedersen, N J; Samdahl, D R. 1982. Highway Traffic Data for Urbanized Area Project Planning and Design. NCHRP Report, Transportation Research Board, Issue 255.

Transportation Research Board. 2010. Highway Capacity Manual 2010.
United States Federal Highway Administration. 2012. I-64 Hampton Roads bridge-tunnel: Draft Environmental Impact Statement and Draft Section 4(f) Evaluation.
United States Federal Highway Administration. 2014. Interstate 64 / High Rise Bridge Corridor Study Environmental Assessment.

United States Federal Highway Administration. March 2010. Interim Guidance on the Application of Travel and Land Use Forecasting in NEPA.

United States Federal Highway Administration. May 6, 2016. INFORMATION: Level of Service on the National Highway System.

Virginia Department of Transportation. June 2014. Travel Demand Modeling Policies and Procedures, Version 2.00.

[^0]: Legend
 x,xxx (x,xxx) AM (PM) Peak Hour Volume

[^1]: Legend
 xx,xxx

